🏖️作者:@malloc不出对象
⛺专栏:《初识C语言》
👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈
目录
前言
本篇文章博主将给大家讲讲浮点型数据在内存中的存储,关于浮点型这个地方其实有很多细节是需要我们去注意的,也是我们经常容易出现错误的地方,在这篇文章中我都会给大家总结出来,让你对浮点型不再感到疑惑。
一. 浮点型数据如何存储的规则(理论部分)
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
V = (-1) ^ S * M + 2^E。
S表示符号位,当s = 0,V为正数,当s = 1,V为负数。
阶码部分(E)(指数部分),2^E(表示指数位)
M表示有效数字,大于等于1,小于2, 浮点数的精度就是由尾数来决定的。
IEEE 754规定:对于32位的浮点数,最高位是符号位s,接着的8位是指数E,剩下的23位为有效数字M,如下图所示:

对于64位的浮点数,最高位是符号位S,接着的11位是指数E,剩下的52位为有效数字M,如下图所示:

IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0\~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,但E为无符号整数不存在符号位,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,使其变为一个正整数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^-1的E是-1,所以保存成32位浮点数时,必须保存成-1+127=126,即01111110注意这个地方为存储值而非真实值.
好了,讲了这么多什么约定,那接下来我们来看看浮点数是怎么化为二进制的。
二. 浮点数怎么转化为二进制
首先我们来个简单的例子:
把十进制小数5.25化为二进制小数,我们应该怎么操作?
我们分为以下几步:
1. 以小数点为界进行拆分;
2. 整数部分转为二进制相信大家肯定没问题
3. 小数部分采用的是"乘2取整法",当乘2之后小数部分得到0就停止计算

4. 合并结果:整数部分 + 小数部分,最终得到二进制结果为101.01.
我们来进行检验一下,发现确实如我们计算的这样:

以上就是浮点数化为二进制的步骤了,下面我们来看看更复杂一点的例子:
把十进制3.14化为二进制:

这里我就不带大家计算下去了,大家可以看下下图:

三. 浮点型数据在内存中的存储
我们先来看这个例子,大家想想浮点型数据是如何存进去的?跟整型数据比有什么区别?
#include<stdio.h>
int main()
{
float f = 5.5;
return 0;
}
我们来分析一下:
这里的0.5化为二进制就是1 * 2^ -1
先化为二进制—>101.1
再化为标准形式V = (-1)^0 * 1.011 * 2^2;
s = 0, M = 1.011, E = 2;
E + 127 = 129—>10000001, M = 011 0000000000 0000000000
最后以0100 0000 1011 0000 0000 0000 0000 0000存入
化为十六进制为0x40b00000


最低0.47元/天 解锁文章
1625

被折叠的 条评论
为什么被折叠?



