1974年的公法私法有关的理想化模型

绿豆芽养成:

1、DeepSeek生成的泡发绿豆芽的纲领:
在这里插入图片描述

2、以下就是每天观察:
在这里插入图片描述
2025年10月1日早上6:30左右泡上温水。午后看到已经大多数膨胀开裂。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/deb80ee4127f40在这里插入图片描述
在这里插入图片描述
到2025年10月4日,16:50,已经膨胀到一个托盘装不下了,见光的地方可能发绿、变老,必须吃掉了!

好的,我已经仔细阅读并整理了您提供的文件《法律的私人执行》(The Private Enforcement of Law 点击下载PDF版本论文)。以下是该文件的中文内容大纲、提要和思维导图。

文件内容提要 (Summary)

[cite_start]本篇工作论文由威廉·M·兰德斯(William M. Landes)和理查德·A·波斯纳(Richard A. Posner)于1974年撰写,旨在对法律的私人执行与公共执行进行经济学分析 [cite: 2, 3, 7][cite_start]。文章的核心在于挑战加里·贝克尔(Gary Becker)和乔治·斯蒂格勒(George Stigler)提出的将法律执行(包括刑事执法)完全私有化的观点 [cite: 19]。

[cite_start]作者首先构建了一个竞争性、利润最大化的私人执法模型,其中私人执法者的收入来源于罪犯支付的罚款 [cite: 46, 64][cite_start]。该模型的核心发现是“过度执法定理”:在一个纯粹的私人执法体系中,为了节约执法资源而设置的高额罚款,反而会像一个强烈的激励信号,吸引私人执法者投入过多的社会资源进行逮捕和定罪活动,从而导致社会总损失超出最优水平 [cite: 186, 191]。

[cite_start]随后,文章探讨了多种扩展情况,如垄断执法(可以部分缓解过度执法问题)、不同的产权分配方案(如将起诉权赋予受害者或国家)、对执法者征税以及非金钱惩罚(如监禁)等 [cite: 196, 197][cite_start]。研究发现,即使在这些情况下,私人执法固有的过度激励问题依然存在 [cite: 237]。

最后,作者运用该模型解释了现实世界中诸多法律制度的成因。例如:

  1. [cite_start]公私分工:为何侵权和合同法主要由私人执行,而刑法则由公共垄断 [cite: 327][cite_start]。因为在前一类案件中,确定违法者的概率接近1,过度执法风险低;而在刑事案件中,发现罪犯需要大量投入,过度执法风险极高 [cite: 340, 349]。
  2. [cite_start]制度设计:为何起诉权通常赋予受害者而非“先到先得” [cite: 354][cite_start];为何公共执法机构(如税务局)的预算常受严格限制 [cite: 403][cite_start];公共执法者为何拥有“酌情不执法”的权力 [cite: 415][cite_start];以及为何敲诈和贿赂被定为犯罪 [cite: 473]。

[cite_start]文章结论认为,现有的公共与私人相结合的混合执法体系,可能比一个完全私有化的体系更有效率,因为它通过多种制度设计,巧妙地限制了纯粹私人执法可能导致的社会资源浪费 [cite: 45]。


文件内容大纲 (Outline)

紫东太初生成的大纲

引言
私人执法的历史与现状
私人执法的经济模型
私人执法的效率
私人执法在合同侵权和财产法中的应用
私人执法在反垄断法中的应用
私人执法在现代美国的局限性
竞争性利润最大化的私人执法模型
模型预测的执法水平和犯罪数量
私人执法在某些领域可能优于公共执法
私人执法与公共执法的比较

引言

  • [cite_start]背景:贝克尔和斯蒂格勒提出的法律执行私有化建议 [cite: 19]。
  • [cite_start]现状:私人执行在合同、侵权法等领域已广泛存在 [cite: 25]。
  • [cite_start]核心问题:当前公共与私人执法的分工是否接近最优? [cite: 45]

第一部分:执法活动的经济模型

  • A. 私人执法行业的均衡条件
    • [cite_start]模型设定:在一个竞争性行业中,产出为逮捕和定罪数量,输入为资源和犯罪数量 [cite: 55, 57]。
    • [cite_start]均衡状态:执法者的总收益(罚款)等于总成本,利润为零 [cite: 85]。
    • [cite_start]模型推论:罚款金额(f)的提高,会同时提高逮捕和定罪的概率(p) [cite: 149, 157]。
  • B. 最优公共执法与私人执法的比较
    • [cite_start]社会损失函数定义:包括犯罪损害、执法成本和惩罚成本 [cite: 158]。
    • [cite_start]过度执法定理:从社会最优角度看,理想的策略是用高额罚款和较低的逮捕概率来威慑犯罪,以节约执法成本。然而,在私人执法体系中,高额罚款会激励执法者投入过多资源,导致逮捕概率过高,从而造成社会资源的浪费 [cite: 186, 190, 191]。

第二部分:模型的扩展

  • A. 垄断性执法
    • [cite_start]垄断者会考虑其执法活动对犯罪数量的抑制作用,因此其执法水平会低于竞争性行业 [cite: 197, 200]。
    • [cite_start]结果:虽然垄断执法比竞争性私人执法更接近社会最优水平(社会损失更小),但仍然存在过度执法的问题 [cite: 206]。
  • B. 法律请求权的产权归属
    • [cite_start]“先到先得”制:导致外部不经济和过度竞争 [cite: 216]。
    • [cite_start]国家所有权:国家拍卖执法权,结果类似于垄断执法 [cite: 217]。
    • [cite_start]受害者所有权:部分解决了外部性问题,但若众多受害者分散执法,效率仍低于单一垄断者 [cite: 222, 234]。
  • C. 对执法者征税
    • [cite_start]税收可以抑制过度执法,但会在罚款和执法者收益之间形成差额,从而创造了贿赂的机会 [cite: 253, 254]。
  • D. 监禁等非金钱制裁
    • [cite_start]需要政府提供赏金来激励私人执法者 [cite: 266]。
    • [cite_start]若赏金过高会导致过度执法;若赏金过低则会产生贿赂空间 [cite: 267, 268]。
  • E. 执法错误
    • [cite_start]私人执法者可能为了收益而构陷无辜 [cite: 276]。
    • [cite_start]文章认为,私人与公共执法者都存在犯错的动机,无法断定哪种体系的错误成本更高 [cite: 287, 300]。

第三部分:私人执法经济分析的对比方法

  • [cite_start]对传统观点的批判:本文的过度执法理论不同于传统的“搭便车”问题或“规模经济”论点 [cite: 305]。
  • [cite_start]本文认为,在私人执法中,搭便车问题可以通过罚款机制解决,而规模经济导致的垄断反而可能因抑制过度执法而有益于社会 [cite: 307, 314]。

第四部分:模型的实证意义 (对现实制度的解释)

  • A. 刑事案件 vs. 侵权与合同案件的执法差异
    • [cite_start]侵权/合同法:私人执行为主,因为发现违法者的概率(p)接近1,过度执法问题不严重 [cite: 331, 340]。
    • [cite_start]刑法:公共垄断为主,因为犯罪行为隐蔽,p很低,私人执行极易导致过度执法 [cite: 328, 349]。
  • B. 法律请求权的产权分配
    • [cite_start]将起诉权赋予受害者是有效率的,避免了“先到先得”的资源浪费,并有助于风险的合理分配 [cite: 347, 381]。
  • C. 公共执法者的预算约束
    • [cite_start]公共机构(如IRS)的预算常被限制在边际收益远大于边际成本的水平,这可以看作是一种防止过度执法的机制 [cite: 403, 409]。
  • D. 酌情不执法
    • [cite_start]法律规则通常是“过度包容”的,公共执法者的酌情权是一种低成本的纠错机制,可以避免不合理的执法 [cite: 418, 426][cite_start]。这种灵活性在利润驱动的私人体系中将不复存在 [cite: 417]。
  • E. 敲诈勒索与贿赂
    • [cite_start]敲诈和贿赂是非法的,因为它们是私人执法的一种形式,会破坏刑法等领域的公共执法垄断,导致执法水平偏离社会最优 [cite: 479, 489]。
    • [cite_start]在私人执行的领域(如合同纠纷),类似行为(庭外和解)是合法的 [cite: 491]。

附录:关于悬赏的经济学分析

  • [cite_start]探讨私人悬赏作为一种雇佣私人执法者的方式,分析悬赏金额与财产价值、返还概率等因素的关系 [cite: 505, 507]。

思维导图 (Mind Map)

  • 核心主题:法律的私人执行 (The Private Enforcement of Law)
    • 中心问题:公共与私人执法的最优分工是什么?
      • [cite_start]挑战观点:完全私有化是最优的(Becker & Stigler) [cite: 19]
      • [cite_start]本文论点:现行混合体系可能更有效率 [cite: 45]
    • 理论模型与核心发现
      • [cite_start]竞争性私人执法模型 [cite: 46]
        • [cite_start]驱动力:利润(罚款或赏金) [cite: 62]
        • [cite_start]均衡:罚款 = 平均执法成本 [cite: 90]
      • [cite_start]过度执法定理 (Overenforcement Theorem) [cite: 186]
        • 社会最优策略:高罚款 (f) + 低逮捕率 § → 节约成本
        • [cite_start]私人执法结果:高罚款 (f) → 激励过度投入 → 过高逮捕率 § → 社会资源浪费 [cite: 191]
    • 模型的扩展与深化
      • 执法主体
        • [cite_start]垄断执法:执法水平↓,社会损失↓,但仍过度 [cite: 200, 206]
      • 产权制度
        • [cite_start]先到先得:过度竞争,效率低 [cite: 216]
        • [cite_start]国家/受害者所有权:更优,可缓解过度执法 [cite: 217, 222]
      • 监管与激励
        • [cite_start]税收:可抑制过度执法,但引发贿赂风险 [cite: 253, 254]
        • [cite_start]非金钱惩罚(监禁):需政府设赏金,同样面临贿赂或过度执法困境 [cite: 266, 267, 268]
      • 执法错误
        • [cite_start]私人执法存在构陷动机,但公共执法亦然,成本对比不明确 [cite: 276, 287]
    • 对现实法律制度的解释 (Positive Implications)
      • 公私领域划分
        • [cite_start]刑法 (公共垄断):p低,过度执法风险高 [cite: 349]
        • [cite_start]侵权/合同法 (私人主导):p高,过度执法风险低 [cite: 340]
      • 相关制度设计
        • [cite_start]受害者权利:效率高于“先到先得”,保障风险分配 [cite: 347, 381]
        • [cite_start]公共预算约束:作为限制政府机构过度执法的隐性工具 [cite: 409]
        • [cite_start]酌情不执法:作为修正“法律过度包容”的低成本工具 [cite: 426, 429]
        • [cite_start]禁止敲诈/贿赂:维护公共执法垄断,防止执法水平偏离最优 [cite: 479, 490]

再来一次:

这篇文章是关于法律的私人执行的经济学模型分析,它探讨了在私人执行体制下,执法的效率、均衡条件以及与最优公共执行系统的比较。

以下是文章的大纲和相应的 Mermaid 思维导图代码。


附件文章《法律的私人执行》大纲

文章标题: The Private Enforcement of Law (法律的私人执行)
作者: William M. Landes 和 Richard A. Posner

引言/背景

  • [cite_start]问题提出: 探讨法律执行中公共与私人职责划分的适当性与实际情况 [cite: 1]。
  • [cite_start]Becker 和 Stigler 的私有化提议: 提倡由私人实体调查、逮捕和起诉违规者,并保留全部罚款作为报酬 [cite: 1]。
  • [cite_start]私人执行的普遍性: 尽管私有化看似激进,但私人执行实际上在合同法、侵权法、财产法、反垄断法、乃至历史上的英国刑法中都普遍存在(包括通过勒索和贿赂进行的非传统执行) [cite: 1]。
  • [cite_start]核心困惑: 为什么现代美国私人执行的程度远低于 Becker 和 Stigler 所认为的效率最优水平?文章提出的替代可能性:现有公共与私人执行的划分可能已接近最优 [cite: 1]。

I. [cite_start]强制执行活动的模型 [cite: 1]

A. 私人执行行业的均衡条件

  • [cite_start]模型构建: 将执行产出(A,逮捕和定罪)视为资源投入(R)和犯罪次数(O)的函数 [cite: 1]。
  • [cite_start]财产权利假设: 遵循 Becker-Stigler 模型,第一个逮捕和定罪的执行者有权获得全部罚款(f)[cite: 1]。
  • 竞争性均衡: 竞争将消除所有利润,总收入(f·A)等于总成本(r·R)。
  • 参数变化的影响分析:
    • 犯罪率的外生增加:R 和 A 等比例增加,概率 p p p 保持不变。
    • 定罪成本的增加:概率 p p p 下降。
    • [cite_start]罚款(f)的增加: 明确预测逮捕和定罪的概率 p p p 将增加(即便逮捕和定罪的总数可能减少) [cite: 2]。

B. 最佳公共和私人执行的比较

  • [cite_start]社会损失函数(L): 定义为犯罪净损失(D)、逮捕和定罪成本(C)以及惩罚的社会成本(bpfO)之和 [cite: 3]。
  • [cite_start]最佳公共执行: 旨在最小化 L,通常通过最大化罚款 f ∗ f^* f 并最小化概率 p p p 来实现 [cite: 3]。
  • [cite_start]过度执行定理 (Overenforcement Theorem): 在最优罚款水平 f f f 下,私人执行产生的逮捕和定罪概率 p 1 p_1 p1 大于 最佳公共执行产生的概率 p 0 p_0 p0 ( p 1 > p 0 p_1 > p_0 p1>p0) [cite: 3]。
  • [cite_start]结论: 私人执行比最优公共执行产生更高的社会损失,因为高罚款给逐利的私人执行者发出了错误的信号,导致执行资源投入过多 [cite: 3]。

II. [cite_start]模型的一些扩展 [cite: 1]

A. 垄断执行

  • [cite_start]垄断执行者会考虑到执行水平的提高会减少犯罪数量,因此执行水平低于竞争性执行 [cite: 4]。
  • [cite_start]垄断执行产生的社会损失低于竞争性私人执行,但仍存在过度执行 [cite: 4]。

B. 法律索赔财产权的国家和受害者所有权

  • [cite_start]将犯罪的权利分配给国家(或垄断者),然后出售给执行者,可以达到与垄断执行相同的效果,从而降低社会损失 [cite: 4]。
  • [cite_start]将权利分配给受害者,将部分内化无产权带来的外部不经济,社会损失介于竞争与垄断之间 [cite: 4]。
  • [cite_start]问题: 在“先来先得”的系统中,犯罪者可能通过自首来获得奖赏并抵消惩罚,从而使法律威慑失效 [cite: 4]。

C. 执行者的征税

  • [cite_start]通过对执行者征税,可以将执行水平降至最优 p p p 所在的水平 [cite: 4]。
  • [cite_start]问题: 征税会在犯罪者支付的罚款和执行者收到的报酬之间制造“楔子”,从而产生贿赂和腐败的诱因 [cite: 4]。

D. 监禁和其他非货币制裁

  • [cite_start]当惩罚为监禁等非货币形式时,国家必须提供奖金(Bounty)来激励私人执行,这也可能增加贿赂的激励 [cite: 4]。

III. [cite_start]与其他经济学方法的比较 [cite: 1]

(该部分在附件内容中未详细展开)

IV. [cite_start]模型的积极含义 [cite: 1]

A. 公共和私人执行之间的选择:刑事与合同和侵权案件的比较

  • [cite_start]刑法: 公共垄断,逮捕概率 p p p 低(通常 p ≪ 1 p \ll 1 p1) [cite: 5]。
  • [cite_start]合同/侵权法: 私人执行主导,逮捕概率 p p p 接近 1( p ≈ 1 p \approx 1 p1),因为违约者身份通常已知 [cite: 5]。
  • [cite_start]解释: p ≈ 1 p \approx 1 p1 的情况下(如侵权和合同案件),第一部分讨论的过度执行问题不会发生,这为私人执行提供了合理性 [cite: 5]。

C. 公共执行者的预算限制

  • [cite_start]公共机构(如 IRS)的预算受限,其运营水平通常是边际成本远低于边际收益,这限制了逮捕概率 p p p 的提高 [cite: 6]。
  • [cite_start]结论: 预算限制是防止公共执行者将执行水平提高到私人执行模型预测的“过度执行”水平的一种方式 [cite: 6]。

D. 法律的酌情不执行

  • [cite_start]公共执行机构在预算限制下对法律拥有酌情不执行的权力,这有助于避免对“过度包容”法规的过度执行 [cite: 7]。
  • [cite_start]私人执行缺乏这种制约机制 [cite: 7]。

F. 集体诉讼 (The Class Action)

  • [cite_start]现行法律允许律师获得“合理律师费”而非全部损害赔偿,这类似于 “执行税”,在支付方(犯罪者)和接收方(律师)之间制造了楔子,从而产生了和解中的贿赂机会 [cite: 8]。

附录. 通过提供奖励聘请私人执行者

  • 讨论了私人自愿奖励(B)与州设定的罚款(f)的不同,以及奖励对找回失窃财产概率的影响。

CSDN Markdown 适用的 Mermaid 思维导图代码

您可以在支持 Mermaid 语法的 Markdown 编辑器(如 CSDN 博客)中使用以下代码来生成文章的思维导图。

mindmap
  root((《法律的私人执行》))
    背景与核心问题
      Gary Becker/Stigler 的私有化提议
      私人执行的普遍性 (合同, 侵权, 历史)
      核心困惑: 实际执行 < 效率最优?
      文章观点: 现有划分可能已最优

    I. 强制执行活动的模型
      A. 竞争性执行的均衡条件
        定义: 产出A(逮捕), 资源R, 犯罪O
        均衡: 总收入(f·A) = 总成本(r·R)
        [cite_start]关键预测: 提高罚款(f) -> 提高逮捕概率(p) [cite: 2]
      B. 最佳公共 VS. 私人执行
        [cite_start]核心发现: 过度执行定理 (Overenforcement) [cite: 3]
          私人执行的 p > 最佳公共执行的 p
          高罚款给私人执行者发出错误信号

    II. 模型的一些扩展
      A. 垄断执行
        与竞争相比: 产出少, 利润高, p 低
        仍存在过度执行
      B. 法律索赔财产权
        国家/垄断所有权 (可优化)
        受害者所有权 (部分优化)
        [cite_start]弊端: 犯罪者可自首规避惩罚 [cite: 4]
      C. 执行者的征税
        可用于优化 p 水平
        [cite_start]弊端: 激励贿赂和腐败 [cite: 4]
      D. 监禁等非货币制裁
        需国家提供奖金 (Bounty)
        [cite_start]增加贿赂可能性 [cite: 4]

    IV. 模型的积极含义
      A. 执行类型的选择
        [cite_start]刑法: 公共垄断 (p 远小于 1) [cite: 5]
        [cite_start]合同/侵权: 私人主导 (p 接近 1) [cite: 5]
        合理性: p≈1 时无过度执行问题
      C. 公共执行者的预算限制
        [cite_start]作用: 限制 p, 防止过度执行 (如 IRS) [cite: 6]
      D. 法律的酌情不执行
        [cite_start]作用: 避免对“过度包容”法规的过度执行 [cite: 7]
      F. 集体诉讼
        律师费制度类似“执行税”
        [cite_start]易导致和解中的贿赂 [cite: 8]

    附录. 通过提供奖励聘请私人执行者 (Rewards)
      奖励 (B) 与财产价值 (V)
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值