P1991 无线通讯网

题目链接

题目描述

国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;

每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。

任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 D,这是受收发器的功率限制。收发器的功率越高,通话距离 D 会更远,但同时价格也会更贵。

收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 D。你的任务是确定收发器必须的最小通话距离 D,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。

输入格式

从 wireless.in 中输入数据第 1 行,2 个整数 S 和 P,S 表示可安装的卫星电话的哨所数,P 表示边防哨所的数量。接下里 P 行,每行两个整数 x,y 描述一个哨所的平面坐标(x, y),以 km 为单位。

输出格式

输出 wireless.out 中

第 1 行,1 个实数 D,表示无线电收发器的最小传输距离,精确到小数点后两位。

输入输出样例

输入 #1

2 4
0 100
0 300
0 600
150 750

输出 #1

212.13

说明/提示

对于 20% 的数据:P = 2,S = 1

对于另外 20% 的数据:P = 4,S = 2

对于 100% 的数据保证:1 ≤ S ≤ 100,S < P ≤ 500,0 ≤ x,y ≤ 10000。

题意:有n个卫星电话,若俩个哨岗都有卫星电话,则无论他们相隔多远,都可以互通电话,若没有卫星电话,则只能用无线电进行通讯,当然无线电是有通讯距离的,问无线电通讯的最短距离是多少?

思路:Kruskal算法是按照边权升序收到最小生成树中,要求最短距离,即让最大的n-1条边所在的点放卫星电话,则最大的边权既是最大值。

#include<bits/stdc++.h>
using namespace std;

const int maxn = 3e5 + 10;
int n, m;
double x[maxn];
double y[maxn];
int father[maxn];
int cnt = 1;

struct Edge{
    int u, v;
    double w;
    bool vis;
}edge[maxn];

int find(int x)
{
    while(x != father[x]){
        x = father[x] = father[father[x]];
    }
    return x;
}

void slove()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= m; i++){
        scanf("%lf%lf", &x[i], &y[i]);
    }

    for(int i = 1; i <= m; i++){
        for(int j = i + 1; j <= m; j++){
            double jl = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
            edge[cnt].u = i;
            edge[cnt].v = j;
            edge[cnt].w = jl;
            edge[cnt].vis = false;
            cnt++;
        }
    }
    for(int i = 1; i <= m; i++)
        father[i] = i;
}

bool cmp(const Edge a, const Edge b)
{
    return a.w < b.w;
}

double kruskal()
{
    sort(edge + 1, edge + cnt, cmp);
    double ans = 0;
    int tot = 0;

    int i;
    for(i = 1; i < cnt; i++){
        int au, av;
        au = find(edge[i].u);
        av = find(edge[i].v);

        if(au == av)continue;

        father[au] = av;
        ans += edge[i].w;
        edge[i].vis = true;
        //做标记,.vis = true

        if(tot == m - 1)break;
        tot++;
    }
    for(i; i >= 1; i--){
        if(edge[i].vis == true){
            n--;
            ans = edge[i].w;
            if(n == 0)break;
        }
    }

    //从后往前遍历,标记过的距离去了,找最大
    return ans;
}

int main()
{
    slove();
    printf("%.2f", kruskal());
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值