题目链接
题目描述
国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;
每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。
任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 D,这是受收发器的功率限制。收发器的功率越高,通话距离 D 会更远,但同时价格也会更贵。
收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 D。你的任务是确定收发器必须的最小通话距离 D,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。
输入格式
从 wireless.in 中输入数据第 1 行,2 个整数 S 和 P,S 表示可安装的卫星电话的哨所数,P 表示边防哨所的数量。接下里 P 行,每行两个整数 x,y 描述一个哨所的平面坐标(x, y),以 km 为单位。
输出格式
输出 wireless.out 中
第 1 行,1 个实数 D,表示无线电收发器的最小传输距离,精确到小数点后两位。
输入输出样例
输入 #1
2 4 0 100 0 300 0 600 150 750
输出 #1
212.13
说明/提示
对于 20% 的数据:P = 2,S = 1
对于另外 20% 的数据:P = 4,S = 2
对于 100% 的数据保证:1 ≤ S ≤ 100,S < P ≤ 500,0 ≤ x,y ≤ 10000。
题意:有n个卫星电话,若俩个哨岗都有卫星电话,则无论他们相隔多远,都可以互通电话,若没有卫星电话,则只能用无线电进行通讯,当然无线电是有通讯距离的,问无线电通讯的最短距离是多少?
思路:Kruskal算法是按照边权升序收到最小生成树中,要求最短距离,即让最大的n-1条边所在的点放卫星电话,则最大的边权既是最大值。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 10;
int n, m;
double x[maxn];
double y[maxn];
int father[maxn];
int cnt = 1;
struct Edge{
int u, v;
double w;
bool vis;
}edge[maxn];
int find(int x)
{
while(x != father[x]){
x = father[x] = father[father[x]];
}
return x;
}
void slove()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; i++){
scanf("%lf%lf", &x[i], &y[i]);
}
for(int i = 1; i <= m; i++){
for(int j = i + 1; j <= m; j++){
double jl = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
edge[cnt].u = i;
edge[cnt].v = j;
edge[cnt].w = jl;
edge[cnt].vis = false;
cnt++;
}
}
for(int i = 1; i <= m; i++)
father[i] = i;
}
bool cmp(const Edge a, const Edge b)
{
return a.w < b.w;
}
double kruskal()
{
sort(edge + 1, edge + cnt, cmp);
double ans = 0;
int tot = 0;
int i;
for(i = 1; i < cnt; i++){
int au, av;
au = find(edge[i].u);
av = find(edge[i].v);
if(au == av)continue;
father[au] = av;
ans += edge[i].w;
edge[i].vis = true;
//做标记,.vis = true
if(tot == m - 1)break;
tot++;
}
for(i; i >= 1; i--){
if(edge[i].vis == true){
n--;
ans = edge[i].w;
if(n == 0)break;
}
}
//从后往前遍历,标记过的距离去了,找最大
return ans;
}
int main()
{
slove();
printf("%.2f", kruskal());
return 0;
}