奶牛抗议——DP之线段树优化

这题我写过一篇60分的做法,所以题面就不写了。
DP方程十分易见:
for(register int i=1;i<=n;i++)
     for(register int j=0;j<=i-1;j++){
        if(sum[i]<sum[j]) continue;
        dp[i]+=dp[j]%1000000009;
     }
相当于我们要求有序数列(i,j)满足{i< j,sum[i]<= sum[j]},这样我们就可以用线段树优化,我们枚举到每个点i,按照其前缀和sum离散,那么i要加上的DP值也就是区间[1…rank[i]]的值。
#include<bits/stdc++.h>
#define MAXN 200005
#define ll long long
using namespace std;
int read(){
    char c;int x=0,y=1;while(c=getchar(),(c<'0'||c>'9')&&c!='-');
    if(c=='-') y=-1;else x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';
    return x*y;
}
int i,j,k,n,m,tot,ans;
const int mod=1000000009;
struct node{    
    ll pl,num;
}f[MAXN];
ll sum[MAXN<<2],dp[MAXN],sortnum[MAXN];
int cmp(node a,node b){
    return a.num<b.num;
}
//void up(int node){sum[node]=(sum[node<<1]+sum[node<<1|1])%mod;}
void update(int node,int l,int r,int p,int c){
    if(l==r){
        sum[node]=(sum[node]+c)%mod;
        return;
    }
    int mid=(l+r)>>1;
    if(p<=mid) update(node<<1,l,mid,p,c);
    else update(node<<1|1,mid+1,r,p,c);
    sum[node]=(sum[node<<1]+sum[node<<1|1])%mod;
}
int query(int node,int l,int r,int lc,int rc){
    if(lc<=l&&r<=rc){
        return sum[node];
    }
    ll mid=(l+r)>>1,ans=0;
    if(lc<=mid) ans=(ans+query(node<<1,l,mid,lc,rc))%mod;
    if(rc>mid) ans=(ans+query(node<<1|1,mid+1,r,lc,rc))%mod; 
    return ans;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++){
        int x=read();
        f[i].num=f[i-1].num+x;f[i].pl=i;
    }
    f[0].pl=0;f[0].num=0;
    sort(f,f+1+n,cmp);
    sortnum[f[0].pl]=++k;
    for(int i=1;i<=n;i++){
        if(f[i].num!=f[i-1].num) k++;
        sortnum[f[i].pl]=k;
    }
    dp[0]=1;
    update(1,1,k,sortnum[0],dp[0]);
    for(int i=1;i<=n;i++){
        dp[i]=query(1,1,k,1,sortnum[i]);
        update(1,1,k,sortnum[i],dp[i]);
    }
    printf("%d",dp[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值