这题我写过一篇60分的做法,所以题面就不写了。
DP方程十分易见:
for(register int i=1;i<=n;i++)
for(register int j=0;j<=i-1;j++){
if(sum[i]<sum[j]) continue;
dp[i]+=dp[j]%1000000009;
}
相当于我们要求有序数列(i,j)满足{i< j,sum[i]<= sum[j]},这样我们就可以用线段树优化,我们枚举到每个点i,按照其前缀和sum离散,那么i要加上的DP值也就是区间[1…rank[i]]的值。
using namespace std;
int read(){
char c;int x=0,y=1;while(c=getchar(),(c<'0'||c>'9')&&c!='-');
if(c=='-') y=-1;else x=c-'0';
while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';
return x*y;
}
int i,j,k,n,m,tot,ans;
const int mod=1000000009;
struct node{
ll pl,num;
}f[MAXN];
ll sum[MAXN<<2],dp[MAXN],sortnum[MAXN];
int cmp(node a,node b){
return a.num<b.num;
}
//void up(int node){sum[node]=(sum[node<<1]+sum[node<<1|1])%mod;}
void update(int node,int l,int r,int p,int c){
if(l==r){
sum[node]=(sum[node]+c)%mod;
return;
}
int mid=(l+r)>>1;
if(p<=mid) update(node<<1,l,mid,p,c);
else update(node<<1|1,mid+1,r,p,c);
sum[node]=(sum[node<<1]+sum[node<<1|1])%mod;
}
int query(int node,int l,int r,int lc,int rc){
if(lc<=l&&r<=rc){
return sum[node];
}
ll mid=(l+r)>>1,ans=0;
if(lc<=mid) ans=(ans+query(node<<1,l,mid,lc,rc))%mod;
if(rc>mid) ans=(ans+query(node<<1|1,mid+1,r,lc,rc))%mod;
return ans;
}
int main()
{
n=read();
for(int i=1;i<=n;i++){
int x=read();
f[i].num=f[i-1].num+x;f[i].pl=i;
}
f[0].pl=0;f[0].num=0;
sort(f,f+1+n,cmp);
sortnum[f[0].pl]=++k;
for(int i=1;i<=n;i++){
if(f[i].num!=f[i-1].num) k++;
sortnum[f[i].pl]=k;
}
dp[0]=1;
update(1,1,k,sortnum[0],dp[0]);
for(int i=1;i<=n;i++){
dp[i]=query(1,1,k,1,sortnum[i]);
update(1,1,k,sortnum[i],dp[i]);
}
printf("%d",dp[n]);
return 0;
}