Description
农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <
= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价
格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要
付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.
Input
* 第1行: 一个数: N
* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽
Output
* 第一行: 最小的可行费用.
Sample Input
4
100 1
15 15
20 5
1 100
输入解释:
共有4块土地.
Sample Output
500
FJ分3组买这些土地:
第一组:100x1,
第二组1x100,
第三组20x5 和 15x15 plot.
每组的价格分别为100,100,300, 总共500.
这道题的DP方程相比上两题更难推,但谁叫我们是OIer呢?还是推出来了:
//我们将每块地按x从小到大sort一遍。我们发现如果对于一块地x,存在y,满足f[x].x<f[y].x,f[x].y<x[y].y
//则x是对结果毫无意义的(在买y是就会顺带买x),可以直接删去x
//当删完所有这种x后,我们发现现在的地是按照x递增,y递减的顺序排列的,所以:
dp[i]=dp[j]+f[i].x*f[j+1].y
dp[i]-f[i].x*f[j+1].y=dp[j]
接下去大家应该知道该干什么了吧?
以-f[i].x为斜率,依旧维护一个下凸包(只不过反向)即可
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll read(){
char c;ll x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
ll n,vis[50006],re,top,r,w,dp[50006],q[50006];
struct node{
ll x,y;
}f[50005],a[50006];
ll cmp(node a,node b){
return a.x<b.x;
}
double x(ll i){return a[i+1].y;}
double y(ll i){return dp[i];}
double k(ll i,ll j){return (y(j)-y(i))/(x(j)-x(i));}
int main(void)
{
n=read();
for(ll i=1;i<=n;i++){
f[i].x=read();f[i].y=read();
}
sort(f+1,f+1+n,cmp);
for(ll i=n;i>0;i--){
if(re>=f[i].y) vis[i]=1;
re=max(re,f[i].y);
}
for(ll i=1;i<=n;i++)
if(!vis[i]) a[++top]=f[i],dp[i]=1e18;
r=w=0;
for(ll i=1;i<=top;i++){
while(r<w&&-a[i].x<=k(q[r],q[r+1])) r++;
ll j=q[r];dp[i]=dp[j]+a[j+1].y*a[i].x;
while(r<w&&k(q[w-1],q[w])<k(q[w],i)) w--;
q[++w]=i;
}
printf("%lld",dp[top]);
return 0;
}