BZOJ2005 [Noi2010]能量采集——莫比乌斯反演

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
这里写图片描述
Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

5 4

【样例输入2】

3 4

Sample Output

【样例输出1】

36

【样例输出2】

20

对于100%的数据:1 ≤ n, m ≤ 100,000。


从(0,0)到(x,y)连线上植物共有gcd(x,y)gcd(x,y)株植物,除去(x,y)再2+1*2+1就是(gcd(x,y)1)2+1=2gcd(x,y)1(gcd(x,y)-1)*2+1=2*gcd(x,y)-1
所以答案就是2(i=1nj=1mgcd(i,j))nm2*(\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j))-n*m
所以重点就是求出i=1nj=1mgcd(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j) (依旧假设n<=mn<=m
i=1nj=1mgcd(i,j)=k=1ni=1nj=1mk[gcd(i,j)=k]=k=1nki=1nkj=1mk[gcd(i,j)=1]\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)=\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}k*[gcd(i,j)=k]=\sum_{k=1}^{n}k*\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}[gcd(i,j)=1]
=k=1nki=1nkj=1mkxgcd(i,j)μ(x)=k=1nkx=1nkμ(x)[nkx][mkx]=\sum_{k=1}^{n}k*\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}\sum_{x|gcd(i,j)}\mu(x)=\sum_{k=1}^{n}k*\sum_{x=1}^{\frac{n}{k}}\mu(x)[\frac{n}{kx}][\frac{m}{kx}]
首先右边就是关于xx的一个数论分块,然后又跟kk有关,所以又要再套一个kk的分块,kk的大分块在外,里面套一层xx的分块即可。
#include<bits/stdc++.h>
#define MAXN 100005
#define ll long long
using namespace std;
int read(){
    char c;int x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
ll n,m,l,r,prime[MAXN],mu[MAXN],vis[MAXN],top,gcd,sum[MAXN];
ll calc(int x){  //x的小分块
    ll l=1,ans=0,N=n/x,M=m/x;
    while(l<=N){
        ll r=min(N/(N/l),M/(M/l));r=min(r,N);
        ans+=(sum[r]-sum[l-1])*(N/l)*(M/l);
        l=r+1;
    }
    return ans;
}
int main()
{
    n=read();m=read();
    if(n>m) swap(n,m);mu[1]=sum[1]=1;
    for(int i=2;i<=m;i++){
        if(!vis[i]) prime[++top]=i,mu[i]=-1;
        for(int j=1;j<=top&&i*prime[j]<=m;j++){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0) break;
            mu[i*prime[j]]=-mu[i];
        }
        sum[i]=sum[i-1]+mu[i];
    }
    l=1;
    while(l<=n){  //k的大分块
        r=min(n/(n/l),m/(m/l));r=min(r,n);
        gcd+=calc(l)*(r-l+1)*(l+r)/2;
        l=r+1;
    }
    printf("%lld",2*gcd-n*m);
    return 0;
}
2018.10.30更新Ps:这道题其实可以不用两个数论分块,因为上面的式子还可以继续化。还记得那个我也不会证但是十分有用的定理吗?
ndμ(n)n=φ(d)d\sum_{n|d} \frac{\mu(n)}{n}=\frac{φ(d)}{d},那么我们带入上面的k=1nkx=1nkμ(x)[nkx][mkx]\sum_{k=1}^{n}k*\sum_{x=1}^{\frac{n}{k}}\mu(x)[\frac{n}{kx}][\frac{m}{kx}]就可以得到k=1nk[nk][mk]φ(k)\sum_{k=1}^{n}k*[\frac{n}{k}][\frac{m}{k}]φ(k),所以我们线性筛出φφ函数,然后直接一个数论分块即可。
发布了184 篇原创文章 · 获赞 40 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览