什么是机器学习?

此为观看视频 What is Machine Learning? 后的笔记。
在这里插入图片描述
作者首先解释了几个经常互换,但其实不同的术语:AI(人工智能),ML(机器学习)和DL(深度学习)。

  • AI利用计算机或机器来模仿人类思维,从而解决问题和做出决策。
  • ML是人工智能的子集,更专注于使用各种自学习算法,从数据中获取知识,以便预测结果
  • DL是机器学习的子集,是可扩展的机器学习,它自动化了很多特征提取过程,并消除了一些人为干预,从而能够使用一些非常大的数据集。

本视频专门讨论机器学习。

监督学习(supervised learning)

机器学习的第一种类型称为监督学习,即使用标记数据集来训练算法对数据进行分类或预测结果。 标记是指数据集中的行以某种方式被标记、打标签或分类。 标记可能是一个“是”或“否”,也可能是某些不同属性的特定类别。

如何应用监督机器学习技术取决于特定用例。 例如分类模型(classification model)可以识别想法或对象并将其分组到预定义的类别中。 现实世界中的一个例子是客户保留,即识别和减少客户流失,因为获取新客户的成本比保留现有客户的成本高得多。我们可以基于客户的历史数据来构建分类模型,以识别流失客户和采取行动。

监督学习的另一种类型是回归(regression)。我们使用各种输入值建立一个方程,每个值根据其对结果影响大小赋予权重,并使用它们来生成输出值的估计。航空公司的机票价格制定(实际上属于收益管理)严重依赖机器学习,他们使用各种输入因素,例如出发前几天、一周中的哪一天、出发、目的地等来预测和最大化收益。

无监督学习(unsupervised learning)

无监督学习使用机器学习算法来分析和聚类未标记的数据集,他可以帮助我们发现隐藏的模式或分组,而无需人工干预。这里使用的是未标记的数据。

无监督学习的其中一种方法是聚类(clustering),例如客户细分。有效的企业营销非常依赖于对客户的了解,这样就可以以最适合的方式与客户联系。但通常客户之间的相似或不同之处并不明显,聚类算法可以根据客户的购买历史、社交媒体活动或网站活动,地理位置等信息,将客户进行分组,以便我们可以向他们发送更多相关优惠,提供更好的客户服务,即让我们的营销工作更有针对性。

无监督学习还有一种技术是降维,指的是减少数据集中输入变量数量的技术,这样就不会让一些冗余参数过度影响结果。

半监督学习(semi-supervised learning)

强化学习(reinforcement learning)是半监督学习的一种形式,我们通常让代理或系统在环境中采取行动。 环境要么奖励代理的正确动作,惩罚它的错误动作。通过多次迭代,系统就可以执行特定任务。

例如自动驾驶汽车,其涉及速度限制、可行驶区域、碰撞等等。我们可以使用强化学习的形式来教系统自动驾驶,并避免碰撞和遵守速度限制。

总结

  • 监督学习
    • 分类(客户保留)
    • 回归(机票收益管理)
  • 无监督学习
    • 聚类(客户细分)
  • 半监督学习
    • 强化学习(自动驾驶)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值