书生大模型实战营第四期L2G4000(InternVL 多模态模型部署微调实践)

多模态大模型简介

多模态大语言模型(Multimodal LargeLanguageModel)是指能够处理和融合多种不同类型数据(如文本、图像、音频、视频等)的大型人工智能模型。这些模型通常基于深度学习技术,能够理解和生成多种模态的数据,从而在各种复杂的应用场景中表现出强大的能力。

下面两个例子展示了MLLM的能力:

多模态研究的重点是不同模态特征空间的对齐

模态对齐范式

介绍两种对齐范式,分别使用了Q-Former和MLP来做对齐。

Q-Former(BLIP系列)

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

BLIP系列工作提出了Q-Former结构来对齐视觉和文本两个模态。模型总体的工作流程如下。


对于Q-Former部分,其设计较为复杂,如下:

具体来说,Q-Former类似传统多模态模型,优化了三个loss:

  • ITMloss:图文匹配
  • LM loss: Predict Next Token
  • ITC loss:对比学习

架构设计:

  • 共享SelfAttention:模态交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值