引言
在当今的人工智能应用中,RAG(检索增强生成)技术以其强大的性能和灵活性,成为开发者们关注的焦点。这个指南旨在帮助您在本地构建一个高效的RAG应用,借助本地嵌入和本地大型语言模型(LLM),提供快速和可靠的生成结果。
主要内容
设置环境
首先,我们需要设置Ollama环境。具体步骤如下:
- 下载并运行Ollama的桌面应用。
- 从命令行中拉取所需模型,例如
llama3.1:8b
和nomic-embed-text
。 - 确保应用运行后,所有模型通过
localhost:11434
提供服务。
安装以下必要的包:
# 文档加载、检索方法和文本分割
%pip install -qU langchain langchain_community
# 本地向量存储通过 Chroma
%pip install -qU langchain_chroma
# 本地推理和嵌入通过 Ollama
%pip install -qU langchain_ollama
文档加载
加载并分割示例文档:
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
loader = We