如何在本地构建RAG应用:全面教程

引言

在当今的人工智能应用中,RAG(检索增强生成)技术以其强大的性能和灵活性,成为开发者们关注的焦点。这个指南旨在帮助您在本地构建一个高效的RAG应用,借助本地嵌入和本地大型语言模型(LLM),提供快速和可靠的生成结果。

主要内容

设置环境

首先,我们需要设置Ollama环境。具体步骤如下:

  1. 下载并运行Ollama的桌面应用。
  2. 从命令行中拉取所需模型,例如llama3.1:8bnomic-embed-text
  3. 确保应用运行后,所有模型通过localhost:11434提供服务。

安装以下必要的包:

# 文档加载、检索方法和文本分割
%pip install -qU langchain langchain_community

# 本地向量存储通过 Chroma
%pip install -qU langchain_chroma

# 本地推理和嵌入通过 Ollama
%pip install -qU langchain_ollama

文档加载

加载并分割示例文档:

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader

loader = We
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值