快速掌握AI工具调用与功能调用:使你的应用更智能

快速掌握AI工具调用与功能调用:使你的应用更智能

引言

在构建智能应用程序时,使用大语言模型(LLM)的工具调用或功能调用是一种强大的策略。它允许模型输出与用户定义的架构相匹配的结果。在本文中,我们将探讨如何设置和使用工具调用功能,以便更好地集成和利用AI模型的功能。

主要内容

什么是工具调用?

工具调用和功能调用可以互换使用。工具调用允许模型在给定的提示下生成符合用户定义架构的输出。虽然名字上暗示了模型在执行某种操作,但实际上,模型只是为工具生成参数,而工具的实际运行是由用户来决定的。

工具调用的结构

工具调用一般包括一个名称、一个参数字典,以及一个可选的标识符。参数字典结构如下:{argument_name: argument_value}

支持工具调用的主要LLM提供商

许多LLM提供商支持工具调用功能,比如Anthropic、Cohere、Google、Mistral以及OpenAI等。这些功能允许在发送请求时包含可用工具及其架构,并在响应中包含工具调用。

使用LangChain定义和绑定工具

LangChain提供了标准化的接口来定义工具、传递给LLM,并表示工具调用。可以使用装饰器@tool或者Pydantic来定义工具的Schema。

from langchain_core.tools import tool

@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

你可以使用以下方法将这些工具绑定到聊天模型中:

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools)

实时流工具调用

在流式上下文中,消息块将通过.tool_call_chunks列表来填充工具调用块。

async for chunk in llm_with_tools.astream(query):
    print(chunk.tool_call_chunks)

代码示例

下面是一个完整的使用案例:

query = "What is 3 * 12? Also, what is 11 + 49?"

llm_with_tools.invoke(query).tool_calls

常见问题和解决方案

无法解析工具调用

有时候,提供商可能会输出格式错误的工具调用。此时,可以使用InvalidToolCall处理这些错误。使用输出解析器进一步处理输出。

from langchain_core.output_parsers.openai_tools import PydanticToolsParser

chain = llm_with_tools | PydanticToolsParser(tools=[Multiply, Add])
chain.invoke(query)

总结和进一步学习资源

通过了解工具调用和功能调用,你可以构建更强大和高效的AI驱动应用。在使用这些功能时,请确保理解不同提供商如何实现这些功能。

进一步学习资源

参考资料

  • LangChain库
  • OpenAI工具接口
  • 各大LLM提供商的工具调用实现

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值