快速掌握AI工具调用与功能调用:使你的应用更智能
引言
在构建智能应用程序时,使用大语言模型(LLM)的工具调用或功能调用是一种强大的策略。它允许模型输出与用户定义的架构相匹配的结果。在本文中,我们将探讨如何设置和使用工具调用功能,以便更好地集成和利用AI模型的功能。
主要内容
什么是工具调用?
工具调用和功能调用可以互换使用。工具调用允许模型在给定的提示下生成符合用户定义架构的输出。虽然名字上暗示了模型在执行某种操作,但实际上,模型只是为工具生成参数,而工具的实际运行是由用户来决定的。
工具调用的结构
工具调用一般包括一个名称、一个参数字典,以及一个可选的标识符。参数字典结构如下:{argument_name: argument_value}
。
支持工具调用的主要LLM提供商
许多LLM提供商支持工具调用功能,比如Anthropic、Cohere、Google、Mistral以及OpenAI等。这些功能允许在发送请求时包含可用工具及其架构,并在响应中包含工具调用。
使用LangChain定义和绑定工具
LangChain提供了标准化的接口来定义工具、传递给LLM,并表示工具调用。可以使用装饰器@tool
或者Pydantic来定义工具的Schema。
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools = [add, multiply]
你可以使用以下方法将这些工具绑定到聊天模型中:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools)
实时流工具调用
在流式上下文中,消息块将通过.tool_call_chunks
列表来填充工具调用块。
async for chunk in llm_with_tools.astream(query):
print(chunk.tool_call_chunks)
代码示例
下面是一个完整的使用案例:
query = "What is 3 * 12? Also, what is 11 + 49?"
llm_with_tools.invoke(query).tool_calls
常见问题和解决方案
无法解析工具调用
有时候,提供商可能会输出格式错误的工具调用。此时,可以使用InvalidToolCall
处理这些错误。使用输出解析器进一步处理输出。
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
chain = llm_with_tools | PydanticToolsParser(tools=[Multiply, Add])
chain.invoke(query)
总结和进一步学习资源
通过了解工具调用和功能调用,你可以构建更强大和高效的AI驱动应用。在使用这些功能时,请确保理解不同提供商如何实现这些功能。
进一步学习资源
参考资料
- LangChain库
- OpenAI工具接口
- 各大LLM提供商的工具调用实现
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—