如何巧妙求一个集合的所有子集(幂集) c++算法实现

例题:

在这里插入图片描述

题目分析:

求一个集合的幂集我们如果用编程的思维来思考的话想到的有dfs暴力搜索,就是把集合的每一项两种选择进行枚举。除了暴力我们有没有办法直接求解呢?
我们仔细观察一下有n个元素的集合和n-1个元素的集合我们知道数学公式幂集的个数等于2^n次幂,因为每个数都有两个选择。我们发现呢:n和n-1个元素是二倍的关系,那么二倍的关系是偶然嘛?不是的,取决于第n个元素选还是不选。不选就是相当于n-1个元素的幂集,选就是n-1的幂集都放入第n个元素。所有有了二倍的关系。知道了这个,那么我们的实现也十分简单了。

代码c++实现:

class Solution {
public:
    vector<vector<int>>ans;
    vector<vector<int>> subsets(vector<int>& nums) {
        if(nums.size()==0)
        return ans;
        vector<int>temp;
        ans.push_back(temp);
        temp.push_back(nums[0]);
        ans.push_back(temp);
        for(int i=1;i<nums.size();i++)
        {
            vector<vector<int>>tmp=ans;
            for(int j=0;j<tmp.size();j++)
            {   
                tmp[j].push_back(nums[i]);
                ans.push_back(tmp[j]);
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeUltraLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值