- 博客(14)
- 收藏
- 关注
原创 《HALCON工业视觉项目案例 3:利用 FFT 与高斯滤波的表面缺陷检测方案》
本文提出了一种基于频域增强的塑料表面缺陷检测方法。针对塑料制品表面纹理复杂、微小缺陷难以检测的问题,通过快速傅里叶变换将图像转换到频域,构建高斯带通滤波器抑制背景纹理并增强缺陷响应。该方法包含图像读取、FFT优化、频域滤波、缺陷提取等步骤,利用动态阈值分割和形态学处理有效识别微小缺陷。实验表明,该方法能稳定检测塑料表面的划伤、凹陷等缺陷,克服了传统空间域方法误检率高的问题。通过参数调整可适应不同材质和分辨率的检测需求,为工业质检提供了一种高效解决方案。
2025-12-18 19:25:41
571
原创 《YOLO模型工业优化实践:从FP32到INT8的性能蜕变》
工业场景下,AI模型需兼顾精度与实时性等多重约束。本文探讨了如何通过量化技术优化YOLO模型,使其满足工业部署需求。研究对比了FP16、ONNX FP32和ONNX INT8三种格式的性能表现,重点介绍了INT8量化的实现流程:准备校准数据、导出FP16模型、转换为ONNX格式并进行PTQ量化。实验表明,量化能显著降低模型体积和计算成本,在保持可接受精度的同时提升推理速度,使模型能在资源受限的工业设备上高效运行,满足自动化产线的实时检测要求。
2025-12-16 18:50:12
833
原创 《从传统视觉到YOLO模型:实现PCB缺陷检测的AI化转型》
本文介绍了利用YOLOv5模型实现PCB缺陷检测的完整流程。首先分析了传统机器视觉方法在PCB检测中的局限性(如对光照敏感、泛化能力不足),然后阐述了YOLO模型的优势(速度快、端到端检测)。文章详细讲解了从环境搭建、数据集准备到模型训练的具体步骤,包括使用公开数据集PKU-Market-PCB,配置YOLOv5训练参数等关键环节。该方案突破了传统视觉检测的瓶颈,能够同时处理多种PCB缺陷,具有更强的鲁棒性和泛化能力,适合现代电子制造产线的质量检测需求。
2025-11-19 16:41:40
1111
原创 【论文阅读笔记】Quantization and Training of Neural Networks for Efficient Integer-Arithm
摘要:本文介绍了一种量化方法,旨在将模型压缩后部署到算力有限的边缘设备,同时保持准确率。核心思路是在训练时对权重和激活函数进行拟量化操作(保留浮点格式),推理时转换为8位整型计算。作者通过数学公式r=S(q−Z)证明了量化值与真实值的关系,并详细阐述了训练和推理的具体实现流程。实验表明,该方法在图像分类和目标检测任务中效果显著。本文认为量化是模型优化的重要技术,对移动端AI部署具有关键意义。
2025-11-16 06:15:02
976
原创 《从Halcon到PaddleOCR:芯片ID识别中传统视觉与深度学习的对比研究》
本文探讨了AI技术在半导体晶圆ID识别中的应用突破,对比传统OCR技术的局限性。传统OCR依赖预设参数,难以适应复杂工况,而基于深度学习的PaddleOCR框架展现出更强的泛化能力和适应性。文章详细介绍了PaddleOCR的检测与识别模块原理,选择PP-OCRv5系列预训练模型实现高效部署,兼顾技术性能与产业安全需求。通过快速环境搭建和模型验证,展示了AI方案在工业视觉检测中的优势,为智能制造提供了可靠的技术路径。
2025-11-15 10:29:47
894
原创 《HALCON工业视觉项目案例4:半导体晶圆ID识别-基于传统图像处理的高精度OCR技术实践》
本文详细介绍了基于Halcon传统机器视觉技术的半导体晶圆ID识别解决方案。通过完整的项目实例,阐述了从图像采集到字符识别的技术流程,重点探讨了在不依赖深度学习的情况下,如何通过传统图像处理方法达到工业级要求的识别精度(99.9%以上)和实时性(处理时间<100ms)。项目展示了包括图像预处理、动态阈值分割、形态学处理、几何特征筛选以及MLP模型识别等核心步骤,体现了传统机器视觉技术在半导体制造等对可靠性要求极高场景中的优势。该方案具有完全可解释、参数可调控、结果可预测的特点,为工业OCR应用提供了高
2025-11-10 20:32:11
707
原创 《HALCON 工业视觉项目案例1:工业药片检测全过程解析》
以上便是官方对于药片检测的实例。通过这个案例,我们可以学到如何通过设置模版的方式,来对药片进行检测。
2025-09-13 06:53:18
368
原创 如何量化Int8格式的模型,并将其部署到app上
本文记录了将Mobilenet模型实现Int8量化并部署到安卓端的过程。主要步骤包括:1)下载并存储Mobilenetv1模型;2)使用TensorFlow Lite进行Int8量化转换,设置输入输出类型为int8;3)查看模型的量化参数和输入输出格式;4)在Android Studio中搭建简单界面,实现图像分类功能。文中详细说明了模型量化转换的关键代码,以及如何获取量化参数等信息,为后续安卓端部署提供了必要准备。
2025-07-27 16:19:01
1034
原创 新手如何搭建最简单的图像分类App(基于Tensorflow Lite与Android)
本教程介绍了如何快速开发一个移动端AI图像分类应用。首先通过PyCharm下载并转换预训练的MobileNet模型,生成.tflite格式文件;然后在Android Studio中创建项目,导入模型并设计简单UI界面(包含图片选择和结果显示功能);最后实现图片预处理、模型推理和分类结果显示的核心逻辑。整个过程仅需基础安卓开发和深度学习知识,适合新手快速入门AI应用开发,为后续复杂功能扩展奠定基础。
2025-07-27 16:18:34
707
原创 【文章1: Transformer论文——Attention Is All You Need新手讲解】
本文介绍了Transformer模型的背景及整体结构。
2025-07-27 16:18:04
605
原创 《机器视觉学习笔记#1:工业相机、镜头、光源选型全攻略》
本文介绍了工业视觉系统选型的基本方法,重点围绕相机、镜头和光源的选择展开。相机选型需考虑视野范围、分辨率、频率等因素;镜头选择取决于相机型号、检测范围和安装空间;光源选型则需分析目标特性、照明方式等。文章通过大量图表详细说明了各类设备的匹配原则和计算方法,为工业视觉工程师的基础知识学习提供了系统指导,帮助根据检测需求合理配置视觉系统组件。
2025-07-27 16:17:05
945
原创 《一文搞定PyTorch/TensorFlow GPU环境搭建(Windows篇)》
本篇介绍了新手如何在windows平台上搭建PyTorch和TensorFlow—GPU版本简单说,安装环境的过程简单说就是:1 先看对照表,记录一下对应的版本。2 按照对照表,下载对应的cuda相关驱动。3 下载对应的TensorFlow和PyTorch版本
2025-04-09 18:45:25
1277
原创 手把手教学——如何在PyCharm实现Pytorch(Tensorflow)工具的使用。
本文主要讲解新手如何快速利用Anaconada搭建ai学习的工具。
2025-03-30 07:43:30
2450
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅