清北学堂-D5-T1-cut

这里写图片描述
可以发现,第一刀必须把两个部分切成斐波那契数列两项的倍数,然后才能避免切不下去的情况。
然后我们就可以 O(n) 枚举约数d,判断n/d是否是斐波那契数列中的一项,然后统计答案,再对m做同样的,就好了。
代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
ll n,m;
ll f[101];
int main(){
    freopen("cut.in","r",stdin);
    freopen("cut.out","w",stdout);
    scanf("%d %d",&n,&m);
    f[1]=1;
    f[2]=1;
    for(int i=3;i<=90;i++){
        f[i]=f[i-1]+f[i-2];
    }
    ll lim=sqrt(n);
    ll ans=0;
    for(int i=1;i<=lim;i++){
        if(n%i==0){
            ll num=n/i;
            ll k=0;
            for(int j=1;j<=90;j++){
                if(num==f[j]){
                    k=num;
                    break;
                }
            }
            if(num==k){
                ans=max(ans,(num-1)*i*m);
            }
            num=i;
            k=0;
            for(int j=1;j<=90;j++){
                if(num==f[j]){
                    k=num;
                    break;
                }
            }
            if(num==k){
                ans=max(ans,(num-1)*(n/i)*m);
            }
        }
    }
    lim=sqrt(m);
    for(int i=1;i<=lim;i++){
        if(m%i==0){
            ll num=m/i;
            ll k=0;
            for(int j=1;j<=90;j++){
                if(num==f[j]){
                    k=num;
                    break;
                }
            }
            if(num==k){
                ans=max(ans,(num-1)*i*n);
            }
            num=i;
            k=0;
            for(int j=1;j<=90;j++){
                if(num==f[j]){
                    k=num;
                    break;
                }
            }
            if(num==k){
                ans=max(ans,(num-1)*(m/i)*n);
            }
        }
    }
    printf("%I64d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值