可以发现,第一刀必须把两个部分切成斐波那契数列两项的倍数,然后才能避免切不下去的情况。
然后我们就可以
O(n√)
枚举约数d,判断n/d是否是斐波那契数列中的一项,然后统计答案,再对m做同样的,就好了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
ll n,m;
ll f[101];
int main(){
freopen("cut.in","r",stdin);
freopen("cut.out","w",stdout);
scanf("%d %d",&n,&m);
f[1]=1;
f[2]=1;
for(int i=3;i<=90;i++){
f[i]=f[i-1]+f[i-2];
}
ll lim=sqrt(n);
ll ans=0;
for(int i=1;i<=lim;i++){
if(n%i==0){
ll num=n/i;
ll k=0;
for(int j=1;j<=90;j++){
if(num==f[j]){
k=num;
break;
}
}
if(num==k){
ans=max(ans,(num-1)*i*m);
}
num=i;
k=0;
for(int j=1;j<=90;j++){
if(num==f[j]){
k=num;
break;
}
}
if(num==k){
ans=max(ans,(num-1)*(n/i)*m);
}
}
}
lim=sqrt(m);
for(int i=1;i<=lim;i++){
if(m%i==0){
ll num=m/i;
ll k=0;
for(int j=1;j<=90;j++){
if(num==f[j]){
k=num;
break;
}
}
if(num==k){
ans=max(ans,(num-1)*i*n);
}
num=i;
k=0;
for(int j=1;j<=90;j++){
if(num==f[j]){
k=num;
break;
}
}
if(num==k){
ans=max(ans,(num-1)*(m/i)*n);
}
}
}
printf("%I64d",ans);
return 0;
}