传送门
贴一下BYvoid的讲解:
【问题分析】
有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决。
【建模方法】
构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi。对于原图中存在的每条边(i,j),在二分图中连接边(Xi,Yj)。然后把二分图最大匹配模型转化为网络流模型,求网络最大流。
最小路径覆盖的条数,就是原图顶点数,减去二分图最大匹配数。沿着匹配边查找,就是一个路径上的点,输出所有路径即可。
【建模分析】
对于一个路径覆盖,有如下性质:
1、每个顶点属于且只属于一个路径。 2、路径上除终点外,从每个顶点出发只有一条边指向路径上的另一顶点。
所以我们可以把每个顶点理解成两个顶点,一个是出发,一个是目标,建立二分图模型。该二分图的任何一个匹配方案,都对应了一个路径覆盖方案。如果匹配数为0,那么显然路径数=顶点数。每增加一条匹配边,那么路径覆盖数就减少一个,所以路径数=顶点数 - 匹配数。要想使路径数最少,则应最大化匹配数,所以要求二分图的最大匹配。
注意,此建模方法求最小路径覆盖仅适用于有向无环图,如果有环或是无向图,那么有可能求出的一些环覆盖,而不是路径覆盖。
然后还有就是如何输出路径。
其实很简单,记录每个点会流向哪个点,然后最后输出就好了,可以看我的代码。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
inline int read(){
int x=0;char ch=' ';int f=1;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
const int N=310,M=2e4+5;
int n,m,s,t,tot=-1;
int flag[N],d[N],q[N],cur[N],Nxt[N],head[N],Next[M],flow[M],to[M];
inline void addedge(int x,int y,int c){
to[++tot]=y;Next[tot]=head[x];head[x]=tot;flow[tot]=c;
to[++tot]=x;Next[tot]=head[y];head[y]=tot;flow[tot]=0;
}
inline bool bfs(){
for(int i=s;i<=t;i++)d[i]=0x3f3f3f3f;
int l=1,r=1;q[1]=s;d[s]=0;
while(l<=r){
int x=q[l++];
for(int i=head[x];i!=-1;i=Next[i]){
int u=to[i];
if(flow[i]&&d[u]>d[x]+1){
d[u]=d[x]+1;
q[++r]=u;
}
}
}
return d[t]!=0x3f3f3f3f;
}
inline int dfs(int x,int a){
if(x==t||!a)return a;
int F=0,f;
for(int &i=cur[x];i!=-1;i=Next[i]){
int u=to[i];
if(flow[i]&&d[u]==d[x]+1&&(f=dfs(u,min(a,flow[i])))>0){
flow[i]-=f;
flow[i^1]+=f;
F+=f;a-=f;
Nxt[x]=u;
if(!a)return F;
}
}
return F;
}
inline int dinic(){
int F=0;
while(bfs()){
for(int i=s;i<=t;i++)cur[i]=head[i];
F+=dfs(s,0x3f3f3f3f);
}
return F;
}
int main(){
memset(head,-1,sizeof(head));
n=read();m=read();s=0;t=n+n+1;
for(int i=1;i<=m;i++){
int x=read(),y=read();
if(!flag[x]){
addedge(s,x,1);
flag[x]=1;
}
addedge(x,y+n,1);
if(!flag[y+n]){
addedge(y+n,t,1);
flag[y+n]=1;
}
}
int ans=dinic();
for(int x=1;x<=n;x++){
if(Nxt[x]){
int now=x;
while(now){
printf("%d ",now);
int tmp=Nxt[now];
Nxt[now]=0;now=tmp;
if(now>n)now-=n;
}
printf("\n");
}
}
printf("%d",n-ans);
return 0;
}