网络流24题:最小路径覆盖问题

传送门
贴一下BYvoid的讲解:

【问题分析】
有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决。
【建模方法】
构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi。对于原图中存在的每条边(i,j),在二分图中连接边(Xi,Yj)。然后把二分图最大匹配模型转化为网络流模型,求网络最大流。
最小路径覆盖的条数,就是原图顶点数,减去二分图最大匹配数。沿着匹配边查找,就是一个路径上的点,输出所有路径即可。
【建模分析】
对于一个路径覆盖,有如下性质:
1、每个顶点属于且只属于一个路径。 2、路径上除终点外,从每个顶点出发只有一条边指向路径上的另一顶点。
所以我们可以把每个顶点理解成两个顶点,一个是出发,一个是目标,建立二分图模型。该二分图的任何一个匹配方案,都对应了一个路径覆盖方案。如果匹配数为0,那么显然路径数=顶点数。每增加一条匹配边,那么路径覆盖数就减少一个,所以路径数=顶点数 - 匹配数。要想使路径数最少,则应最大化匹配数,所以要求二分图的最大匹配。
注意,此建模方法求最小路径覆盖仅适用于有向无环图,如果有环或是无向图,那么有可能求出的一些环覆盖,而不是路径覆盖。

然后还有就是如何输出路径。
其实很简单,记录每个点会流向哪个点,然后最后输出就好了,可以看我的代码。
代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
inline int read(){
    int x=0;char ch=' ';int f=1;
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')f=-1,ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
    return x*f;
}
const int N=310,M=2e4+5;
int n,m,s,t,tot=-1;
int flag[N],d[N],q[N],cur[N],Nxt[N],head[N],Next[M],flow[M],to[M];
inline void addedge(int x,int y,int c){
    to[++tot]=y;Next[tot]=head[x];head[x]=tot;flow[tot]=c;
    to[++tot]=x;Next[tot]=head[y];head[y]=tot;flow[tot]=0;
}
inline bool bfs(){
    for(int i=s;i<=t;i++)d[i]=0x3f3f3f3f;
    int l=1,r=1;q[1]=s;d[s]=0;
    while(l<=r){
        int x=q[l++];
        for(int i=head[x];i!=-1;i=Next[i]){
            int u=to[i];
            if(flow[i]&&d[u]>d[x]+1){
                d[u]=d[x]+1;
                q[++r]=u;
            }
        }
    }
    return d[t]!=0x3f3f3f3f;
}
inline int dfs(int x,int a){
    if(x==t||!a)return a;
    int F=0,f;
    for(int &i=cur[x];i!=-1;i=Next[i]){
        int u=to[i];
        if(flow[i]&&d[u]==d[x]+1&&(f=dfs(u,min(a,flow[i])))>0){
            flow[i]-=f;
            flow[i^1]+=f;
            F+=f;a-=f;
            Nxt[x]=u;
            if(!a)return F;
        }
    }
    return F;
}
inline int dinic(){
    int F=0;
    while(bfs()){
        for(int i=s;i<=t;i++)cur[i]=head[i];
        F+=dfs(s,0x3f3f3f3f);
    }
    return F;
}
int main(){
    memset(head,-1,sizeof(head));
    n=read();m=read();s=0;t=n+n+1;
    for(int i=1;i<=m;i++){
        int x=read(),y=read();
        if(!flag[x]){
            addedge(s,x,1);
            flag[x]=1;
        }
        addedge(x,y+n,1);
        if(!flag[y+n]){
            addedge(y+n,t,1);
            flag[y+n]=1;
        }
    }
    int ans=dinic();
    for(int x=1;x<=n;x++){
        if(Nxt[x]){
            int now=x;
            while(now){
                printf("%d ",now);
                int tmp=Nxt[now];
                Nxt[now]=0;now=tmp;
                if(now>n)now-=n;
            }
            printf("\n");
        }
    }
    printf("%d",n-ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值