导数基本概念

定义

f ( x ) − f ( a ) x − a {f(x) - f(a)\over x -a} xaf(x)f(a) 表示 f(x) 函数从 x 到 a 的平均变化率,如果使 x 趋近于 a,则表示函数在 a 点的变化率。

若有以下极限存在(定义域不包含a):
lim ⁡ x → a f ( x ) − f ( a ) x − a \lim \limits_{x\rightarrow a} {{f(x) - f(a)\over x - a}} xalimxaf(x)f(a)
则称 f 于 a 处可导,并称这个极限为 f 于 a 处的导数,记作: f ′ ( a ) f^{'}(a) f(a),也可记作 在这里插入图片描述,或者 d ( f ) d ( x ) ( a ) {d(f)\over d(x)}(a) d(x)d(f)(a)

几何意义

导数可以表示函数的曲线上的切线斜率,如下图:
在这里插入图片描述
Δ x \Delta x Δx 无穷小时,则 P 点趋近于 P0 点,割线 T 的斜率趋于 P0 点切线的斜率,记作:
t a n   α = Δ y Δ x = f ( x 0 + Δ x ) − f ( x 0 ) Δ x tan\ \alpha = {\Delta y\over \Delta x} = {f(x0 + \Delta x) - f(x0) \over \Delta x} tan α=ΔxΔy=Δxf(x0+Δx)f(x0)

常用求导公式

  • ( c ) ′ = 0 (c)^{'} = 0 (c)=0
  • ( x α ) ′ = α x ( α − 1 ) (x^{\alpha})^{'} = \alpha x^{(\alpha -1)} (xα)=αx(α1)
  • s i n ( x ) ′ = c o s ( x ) sin(x)^{'} = cos(x) sin(x)=cos(x)
  • c o s ( x ) ′ = − s i n ( x ) cos(x)^{'} = -sin(x) cos(x)=sin(x)
  • t a n ( x ) ′ = s e c 2 ( x ) tan(x)^{'} = sec^{2}(x) tan(x)=sec2(x)
  • ( a x ) ′ = a x l n   a (a^{x})^{'} = a^{x} ln\ a (ax)=axln a
  • ( e x ) ′ = e x (e^{x})^{'} = e^{x} (ex)=ex
  • ( l o g a x ) ′ = 1 x l n   a (log_ax)^{'} = {1\over x ln \ a} (logax)=xln a1
  • ( l n x ) ′ = 1 x (lnx)^{'} = {1\over x} (lnx)=x1

基本求导法则

  • ( u ± v ) = u ′ ± v ′ (u \pm v) = u^{'} \pm v^{'} (u±v)=u±v
  • ( c u ) ′ = c u ′ (cu)^{'} = cu^{'} (cu)=cu
  • ( u v ) ′ = u ′ v + u v ′ (uv)^{'} = u^{'}v+uv^{'} (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 ({u\over v})' = {{u^{'}v - uv^{'}} \over v^{2}} (vu)=v2uvuv
  • ( 1 v ) ′ = 1 v 2 ({1\over v})^{'} = {1 \over v^{2}} (v1)=v21

复合函数求导

若有两个一元函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),可以将 g g g 的函数值作为 f f f 的自变量,得到一个新的函数称为 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的符合函数,记作 f [ g ( x ) ] f[g(x)] f[g(x)],其导数为:
f [ g ( x ) ] = f ′ [ g ( x ) ] g ′ ( x ) f[g(x)] = f^{'}[g(x)]g^{'}(x) f[g(x)]=f[g(x)]g(x)

例如对于 y = s i n ( 2 x ) y = sin(2x) y=sin(2x) 函数求导,可以分解为 g ( x ) = 2 x g(x) = 2x g(x)=2x f ( x ) = s i n [ g ( x ) ] f(x) = sin[g(x)] f(x)=sin[g(x)],则:
f ′ ( x ) = x c o s ( 2 x ) f^{'}(x) = xcos(2x) f(x)=xcos(2x)

偏导数

偏导数是指一个多元函数对其中一个自变量求导,而保持其他变量恒定,记作:
∂ f ∂ x \partial f \over \partial x xf
例如对于 f ( x , y ) = x 2 + y 2 + 2 x y f(x,y) = x^{2} + y^{2} + 2xy f(x,y)=x2+y2+2xy,对 x x x 求偏导数,可以将 y y y 看为常量:
∂ f ∂ x ( x , y ) = 2 x + 2 y {\partial f \over \partial x}(x,y) = 2x + 2y xf(x,y)=2x+2y

二阶导数

一阶导数表示的变化率,二阶导数则表示该变化率本身是否变化得快。其几何意义则为斜率是否变化得快,从图像上看即曲率或凹凸性。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据以下考纲筛选考试重点**第一章 函数、极限与连续** 1. 函数 (1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。 (2)了解函数的有界性、单调性、周期性和奇偶性。 (3)理解复合函数及分段函数的概念。 (4)掌握基本初等函数的性质及其图形,理解初等函数的概念。 2.数列与函数的极限 (1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质。 (2)掌握极限四则运算法则,会应用两个重要极限。 3.函数的连续性 (1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 (2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。 **第二章 导数与微分** 1.导数概念 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义及物理意义。 2.函数的求导法则 掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则。 3.高阶导数 理解高阶导数的概念,会求简单函数的高阶导数。 4.函数的微分 理解微分的概念,掌握导数与微分之间的关系,会求函数的微分。 **第三章 导数的应用** 1.洛必达法则 掌握用洛必达法则求未定式极限的方法。 2.函数的单调性、极值、最大值与最小值 (1)掌握函数单调性的判别方法及其应用。 (2)掌握函数极值、最大值和最小值的求法,会求解较简单的应用问题。 **第四章 不定积分** 1.不定积分的概念与性质 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式。 2.不定积分的方法 掌握不定积分的换元积分法和分部积分法。 **第五章 定积分及其应用** 1.定积分的概念与性质 理解定积分的概念,了解定积分的几何意义、基本性质。 2.定积分的计算方法 理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。 3. 会利用定积分计算平面图形的面积。
03-22

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值