- 博客(11)
- 收藏
- 关注
原创 Latex篇章结构
Latex篇章结构%导言区\documentclass{cextbook}\usepackage{ctex}%正文区\begin{document} \tableofcontents \chapter{绪论} \section{研究目的和意义} \section{国内外研究现状} \subsection{国外研究现状} \subsection{国内研究现状} \section{研究内容} \section{研究方法和技术路线} \subsection{研究方法} \subsu
2021-09-06 16:43:03 309
原创 Latex字体设置
Latex字体设置%导言区\decomentclass{article}%正文区\begin{document}%字体族设置(罗马字体,无衬线字体,打字机字体)\textrm{Roman Family}\textsf{Sans Serif Family}\texttt{Typewriter Family}%字体族声明{\rmfamily Roman Family}{\sffamily Sans Serif Family}{\ttfamily Typewriter Family}
2021-09-06 16:42:32 361
原创 Latex中的中文处理方法
Latex中的中文处理方法%默认编辑器 XeLaTeX,默认编辑器编码格式UTF-8%导言区\documentclass{article}%book,report,letter\usepackage{ctex}\newcommand\degree{^\circ}\title{\heiti 杂谈勾股定理}\author{\kaishu 张三}\date{\today}%正文区(文稿区)\begin{document} \maketitle 勾股定理可以用现代语言表述如下: 直角
2021-09-06 16:42:01 428
原创 Latex源文件基本结构
Latex源文件基本结构%导言区\documentclass{article}%book,report,letter\title{文章标题}\author{作者}\date{\today}%正文(文稿区)\begin{document} \maketitle Hello Word!\\ %单$数学模式,双$行间公式 Let $f(x)$ be defined by the formula $f(x)=3x^2+x-1$\\ $$f(x)=3x^2+x-1$$which is a po
2021-09-06 16:40:14 134
原创 已知高维高斯联合概率分布求边缘概率分布以及条件概率分布
博主最近在看卡尔曼滤波算法,个人认为在卡尔曼滤波算法中最核心的部分莫过于高维高斯联合概率分布的性质,因此打算将这些性质整理成博客记录下来方便自己今后的学习,如果有哪里不对,欢迎各位读者指正。一 引理 这里我引入一个定理,这个定理不在本博客证明,因为它很直观,便于理解。 假设随机变量XXX服从均值为μ\muμ,协方差矩阵为Σ\SigmaΣ的高斯分布(为了更具有一般性,这里的均值是一个向量,协方差是一个矩阵)。随机变量Y=AX+BY=AX+BY=AX+B(这里的矩阵AAA和BBB都是常值矩阵)
2021-04-27 21:25:03 2493 1
原创 高斯消元法求矩阵的逆矩阵C语言实现
一 原理 在大学的线性代数课程中我们学习到了,想求一个nnn维方阵的逆矩阵(如果存在的话),一种可行的方法是将其与一个对应维度的单位矩阵进行列的拼接,然后对所拼接的矩阵只进行初等的行变换并且当左侧的矩阵变换成为nnn维的单位矩阵时,右侧的矩阵则为待求的逆矩阵,见式(1-1-1),其中矩阵AAA是一个nnn阶的方阵.二 C语言实现#include<stdio.h>#include<stdlib.h>float **Matrix_Inv(float **array1,
2021-04-05 19:55:09 1611 1
原创 实对称矩阵特征值特征向量求解算法C语言实现
一 算法原理雅可比方法用于求解实对称矩阵的特征值和特征向量,对于实对称矩阵AAA,必有正交矩阵UUU,使得UTAU=DU^{T}AU=DUTAU=D.DDD是一个对角阵,主对角线的元素是矩阵AAA的特征值,正交矩阵UUU的每一列对应于属于矩阵DDD的主对角线对应元素的特征向量.雅可比方法用平面旋转对矩阵AAA做相似变换,化AAA为对角阵,从而求解出特征值和特征向量.旋转矩阵UpqU_p{_q}Upq,是一个单位阵在第ppp行,第ppp列,第qqq行,第qqq列,元素为cosφcos\varphico
2021-04-05 09:18:10 3936 3
原创 EM算法高斯混合模型C语言实现
一 问题的引出 我们都知道极大似然估计是一种很有效的估计分布参数的方法,例如,我们先验性地假设某班级男性同学的身高是服从于某一个一维高斯分布,并且通过简单随机抽样,我们获取到了NNN个样本.现在我们想通过这些样本估计出该高斯分布的分布参数(即均值和方差),于是我们可以建立似然函数并对该两个参量求其导数令其为000,可以求得其参数.但是现在考虑一种新的问题,假设我们所采集到的样本数据不是单独的男性身高数据,而是男性和女性样本数据的混合,并且假设女性样本数据也服从于某一参数的高斯分布,现在的问题是估计出
2021-04-04 22:10:29 602
原创 重叠相加法计算卷积
一 原理 我们知道,对于一个线性时不变系统来说,当给定其离散的输入序列时,要想计算该序列通过该线性时不变系统所引起的零状态响应时,可以使用该序列与该系统的冲激响应序列相卷积进行求解,也即式(1-1-1).y(n)=∑k=−∞∞x(k)h(n−k)(1-1-1)y(n)=\sum_{k=-\infty}^{\infty}x(k)h(n-k)\tag{1-1-1}y(n)=k=−∞∑∞x(k)h(n−k)(1-1-1)实际进行编程时,我们可能需要使用三重循环来进行计算,但是当输入的数据序列无
2021-04-04 19:36:20 3256
原创 变量循环重新标号法求对称正定矩阵逆矩阵
一 算法原理对称矩阵特征值算法雅可比方法用于求解实对称矩阵的特征值和特征向量,对于实对称矩阵AAA,必有正交矩阵UUU,使得UTAU=DU^{T}AU=DUTAU=D.DDD是一个对角阵,主对角线的元素是矩阵AAA的特征值,正交矩阵UUU的每一列对应于属于矩阵DDD的主对角线对应元素的特征向量.雅可比方法用平面旋转对矩阵AAA做相似变换,化AAA为对角阵,从而求解出特征值和特征向量.旋转矩阵UpqU_p{_q}Upq,是一个单位阵在第ppp行,第ppp列,第qqq行,第qqq列,元素为cosφ
2021-03-26 23:38:46 1205 1
原创 离散分数傅立叶变换快速算法
一 引言 傅里叶变换不论在数学界还是在工程领域都是一种非常重要的分析工具,一位傅里叶变换的表达式为(1-1-1),其中f(t)f(t)f(t)是一个属于能量有限的信号空间的信号,傅里叶变换是一种可逆变换,其逆变换的表达式为(1-1-2),有的文献逆变换前的系数为12π\frac 1{2\pi}2π1,本文的定义是为了表现出傅里叶变换的正交性,因此对一个信号做傅里叶变换可以看作是把该信号与复指数信号做内积(投影)的结果.F(w)=12π∫−∞∞f(t)e−jwtdt(1-1-1)F(w)=\fr
2021-03-22 11:43:10 1439 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人