java 输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果

12 篇文章 0 订阅
11 篇文章 0 订阅
题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。
如果是返回true,否则返回false。
例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果:
    8
   / /
  6  10
/ / / /
5 7 9 11
因此返回true。

如果输入7、4、6、5,没有哪棵树的后序遍历的结果是这个序列,因此返回false。

最后一个元素为根,左子树都比根小,右子树都比根大,递归判断。右子树有比根小的元素则返回false

public class IsPostorderResult {
	public boolean isPostorderResult(int[] a,int n){
		return helper(a,0,n-1);
	}
	private boolean helper(int[] a,int s,int e){
		
			
			if(a.length==0||s>e)
				return false;
			if(s==e) return true;
			int root=a[e];
			int i;
			for(i=s;i<e;i++){//判断左子树
				if(a[i]>root){
					break;
				}
			}
			int right=i;
			if(!helper(a, right, e-1)){//右子树 返回false的话
				return false;
			}
			for(;i<e;i++){//判断右子树
				if(a[i]<root){
					return false;
				}
			}
		
			return helper(a, s, right-1);
	}
	public static void main(String[] args) {
		IsPostorderResult iResult=new IsPostorderResult();
		int a[]={5,7,6,9,11,10,8};
		boolean flag=iResult.isPostorderResult(a, a.length);
		System.out.println(flag);
		a=new int[]{7,4,6,5};
		flag=iResult.isPostorderResult(a, a.length);
		System.out.println(flag);
	}
}


### 回答1: 题目描述: 输入一个整数数组判断数组是不是二元查找后序遍历的结果。如果是返回true,否则返回false。 解题思路: 二元查找的特点是左子的所有节点都小于根节点,右子的所有节点都大于根节点。而后序遍历的最后一个元素是根节点,因此可以将数组分为两部分,一部分是左子,一部分是右子。然后递归判断左右子是否符合二元查找的特点。 具体实现: 1. 判断输入数组是否为空或长度为,如果是则返回false。 2. 以数组的最后一个元素作为根节点,找到第一个大于根节点的元素,将数组分为左右两部分。 3. 判断右子中是否有小于根节点的元素,如果有则返回false。 4. 递归判断左右子是否符合二元查找的特点。 代码实现: public boolean verifySequenceOfBST(int[] sequence) { if (sequence == null || sequence.length == ) { return false; } return verifySequenceOfBST(sequence, , sequence.length - 1); } private boolean verifySequenceOfBST(int[] sequence, int start, int end) { if (start >= end) { return true; } int root = sequence[end]; int i = start; while (i < end && sequence[i] < root) { i++; } int j = i; while (j < end) { if (sequence[j] < root) { return false; } j++; } return verifySequenceOfBST(sequence, start, i - 1) && verifySequenceOfBST(sequence, i, end - 1); } ### 回答2: 二元查找是一种二叉,它的左子节点值都小于根节点值,右子节点值都大于根节点值。而根据二叉后序遍历的输出,最后输出的是根节点值,然后是右子,最后是左子。因此,我们可以通过判断输入的整数数组是否满足该规律,从而判断数组是否是某二元查找后序遍历结果。 首先,我们需要找到输入整数数组的最后一个元素作为根节点。然后,我们遍历该数组,找到第一个大于根节点值的元素,这个元素前面的所有元素都应该是左子节点,后面的所有元素都应该是右子节点。接下来我们判断右子节点是否都大于根节点值,如果不是则返回false;然后我们再递归判断左子和右子是否也满足该规律,如果都满足,则说明该数组是某二元查找后序遍历结果,返回true,否则返回false。 例如,对于输入数组{4, 8, 6, 12, 16, 14, 10},最后一个元素10是根节点,我们发现6是第一个大于10的元素,因此前面的元素{4,8}都是左子节点,后面的元素{12,16,14}都是右子节点。接着我们发现14不满足右子节点都大于根节点值的规律,因此该数组不是某二元查找后序遍历结果,返回false。 ### 回答3: 二元查找(Binary Search Tree)又叫二叉搜索,是一种特殊的二叉,它的左子中所有节点的值都小于它的根节点的值,右子中所有节点的值都大于它的根节点的值,而且左、右子都是二元查找后序遍历是指先遍历左子,再遍历右子,最后访问根节点。如果一个数组是某二元查找后序遍历结果,那么该数组的最后一位必定是根节点。 我们可以利用这个性质来判断一个数组是否是某二元查找后序遍历结果。对于二叉搜索来说,左子的所有节点的值都小于根节点的值,右子的所有节点的值都大于根节点的值。而且左、右子也都是二叉搜索。因此,我们可以将数组分成两部分,一部分是小于根节点的值,一部分是大于根节点的值。如果把这个数组切成了两个部分,那么数组就可以被划分成两个部分,前面一部分都比最后一个数小,后面一部分都比最后一个数大。 我们可以采用递归的方式判断左右子是否是二叉搜索。具体来说,如果数组为空或者只有一个元素,那么它肯定是二叉搜索后序遍历结果。否则,我们可以找到数组的最后一个元素作为根节点,然后从左到右扫描数组,找到第一个大于根节点的元素,这个元素前面的就是左子,后面的就是右子。接下来,我们递归判断左右子是否是二叉搜索。 代码实现如下: bool VerifySequenceOfBST(int sequence[], int length) { if (sequence == nullptr || length <= 0) { return false; } int root = sequence[length - 1]; // 找到第一个大于根节点的元素,它前面是左子,后面是右子 int i = 0; for (; i < length - 1; i++) { if (sequence[i] > root) { break; } } // 判断右子中的元素是否都大于根节点 int j = i; for (; j < length - 1; j++) { if (sequence[j] < root) { return false; } } // 判断左子是否是二叉搜索 bool left = true; if (i > 0) { left = VerifySequenceOfBST(sequence, i); } // 判断右子是否是二叉搜索 bool right = true; if (i < length - 1) { right = VerifySequenceOfBST(sequence + i, length - i - 1); } return left && right; } 在这个算法的实现中,我们用了两个指针i和j来记录左子和右子的边界。在第一个循环中,当找到第一个大于根节点的元素时,i就是左子的边界。在第二个循环中,我们从i开始扫描数组,如果发现有任何一个元素小于根节点,那么就不是二叉搜索后序遍历结果。同时,如果i的值等于数组长度减一,那么说明没有右子,只有左子。在递归调用本函数时,我们需要把右子的起始位置设置为sequence+i,长度为length-i-1。如果左右子都是二叉搜索后序遍历结果,那么整个数组就是二叉搜索后序遍历结果。 总之,这个算法的时间复杂度是O(nlogn),空间复杂度是O(logn),其中n是数组的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值