题目描述
给定一棵二叉搜索树,请找出其中第k大的节点。
输入: root = [3,1,4,null,2], k = 1
3
/
1 4
2
输出: 4
二叉搜索树(二叉查找树)在二叉树的基础上,增加以下条件:
1.如果左子树不为空。则左子树上所有节点的值均小于根节点的值
2.如果右子树不为空,则右子树上所有节点的值均大于根节点的值
3.左右子树也都是二叉查找树
二叉搜索树的中序遍历是递增序列
所以这道题可以转换为求“此树的中序遍历倒序的第 k个节点”
中序遍历:
中序遍历 为 “左、根、右” 顺序,递归法代码如下:
// 打印中序遍历
void dfs(TreeNode root) {
if(root == null) return;
dfs(root.left); // 左
System.out.println(root.val); // 根
dfs(root.right); // 右
}
中序遍历倒序为“右、根、左” 顺序
void dfs(TreeNode root) {
if(root == null) return;
dfs(root.right); // 右
System.out.println(root.val); // 根
dfs(root.left); // 左
}
解题思路:
终止条件: 当节点 root为空(越过叶节点),则直接返回;
递归右子树: 即 dfs(root.right);
三项工作:
提前返回: 若 k = 0,代表已找到目标节点,无需继续遍历,因此直接返回;
统计序号: 执行 k = k - 1 (即从 kk 减至 00 );
记录结果: 若 k = 0,代表当前节点为第 kk 大的节点,因此记录 res = root.val ;
递归左子树: 即 dfs(root.left) ;
代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
int res;
int k;
public int kthLargest(TreeNode root, int k) {
this.k = k;
dfs(root);
return res;
}
void dfs(TreeNode root){
if(root == null){
return;
}
dfs(root.right);
if(k == 0){
return;
}
k--;
if(k == 0){
res = root.val;
}
dfs(root.left);
}
}
如果需要在idea 使用debug模式
以输入为:【2 3 4 5 6 7 8 】 k=1为例:
5
3 7
24 68
建树过程如下:
public class tree {
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
}
public static void main(String[] args){
tree t = new tree();
TreeNode root = t.new TreeNode(5);
TreeNode a = t.new TreeNode(3);
TreeNode b = t.new TreeNode(7);
TreeNode c = t.new TreeNode(2);
TreeNode d = t.new TreeNode(4);
TreeNode e = t.new TreeNode(6);
TreeNode f = t.new TreeNode(8);
root.left = a;
root.right = b;
a.left = c;
a.right = d;
b.left = e;
b.right = f;
}