题目描述
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
思路:
首先对数组进行排序
创建一个list存放结果
固定数组中的一个数num[i],然后使用双指针指向该数后边的左右两端(nums[left]、nums[right]),计算该数和两个指针指向的数字之和,如果为0,则添加进结果集。
如果num[i]大于0,则其后面的数都比0大,三数之和必然无法为0,结束循环;
如果num[i] == num[i-1] 则该数重复,跳过;
如果sum为0,添加到结果集,如果nums[left] = nums[left+1] 则结果重复,left++;如果nums[right] = nums[right-1] 则结果重复,right–;
代码:
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> res = new ArrayList<>();
for(int i = 0;i<nums.length-2;i++){
int left = i+1;
int right = nums.length - 1;
if(nums[i] >0){
return res;
}
if(i > 0 && nums[i] == nums[i-1]){
continue;
}
while(left < right){
int sum = nums[i]+nums[left]+nums[right];
if(sum == 0){
res.add(Arrays.asList(new Integer[]{nums[i],nums[left],nums[right]}));
while(left <right && nums[left] == nums[left+1]){
left++;
}
while(left <right && nums[right] == nums[right-1]){
right--;
}
left++;
right--;
}else if (sum < 0){
left++;
}else{
right--;
}
}
}
return res;
}
}
最接近的三数之和
题目描述
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
与上一题的思路基本相同
需要增加一个diff变量,记录三数之和与target的差值,closeSum变量记录最接近的三数之和。
不需要判断nums[left] 和nums[left+1],nums[right] 和 nums[right-1] 的大小关系(上一题是由于不可重复)
如果当前三数之和与target的差值比diff小,则将diff值更新,closeSum值也更新
如果当前三数之和小于target,则left++,使得和变大
如果当前三数之和大于target,则right–,使得和变小
代码:
class Solution {
public int threeSumClosest(int[] nums, int target) {
Arrays.sort(nums);
int diff = Integer.MAX_VALUE;
int closeSum = 0;
for(int i = 0;i<nums.length-2;i++){
int left = i+1;
int right = nums.length-1;
int sum = 0;
int tempdiff = 0;
while(left < right){
sum = nums[i] + nums[left] + nums[right];
tempdiff = Math.abs(sum-target);
if(tempdiff < diff){
closeSum = sum;
diff = tempdiff;
}
if(sum < target){
left++;
}else if (sum > target){
right--;
}else{
return closeSum;
}
}
}
return closeSum;
}
}