bzoj2989&4170【二进制分组】【主席树】

其实没有要求强制在线,可以直接上CDQ分治

二进制分组嘛可以看看2013年xhr的《浅谈数据结构题的几个非经典解法》

或者看看%%CA的博客http://m.blog.csdn.net/article/details?id=47909599

本题概括:给定平面上一些点和一些操作,操作分两种,一种是加点,一种是查询某个菱形区域内的点数

搞个坐标变换就能变成正方形了

首先,二进制分组和CDQ分治一样要求操作(本题中是加点)对询问的贡献互相独立

然后可以把操作按二进制进行分组

例子:23=16+4+2+1,所以把1~23号操作分为[1,16],[17,20],[21,22],[23,23]这几组

查询的时候在每个组分别查询,修改的话就把分组变一下

例如加入24号操作后分组变为[1,16],[17,24]

最后新生成的分组暴力重构

那么现在每个分组内的问题就变成了,一开始给一些点,然后给一个查询,要求出一个方形区域内的点数,主席树搞一搞就好了

(注意,这里如果记单次查询复杂度为f(n),那么总的查询就是O(n*logn*f(n)),所以查询要用低复杂度的方法,而预处理(也就是上面的暴力重构)则无所谓,详见论文)

总时间复杂度是O(nlog^2n),和CDQ差不多,常数大一些,但是可以强制在线

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
typedef pair<int,int> pii;
#define fi first
#define se second
#define mp make_pair<int,int>
typedef long long LL;
inline int read()
{
	int x=0;bool f=0;char c=getchar();
	for (;c<'0'||c>'9';c=getchar()) f=c=='-'?1:0;
	for (;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0';
	return f?-x:x;
}
const int N=100010,P=20,A=60000,M=160010,maxn=10000010;
int n,q,rl[P],pnum=0,_a[N],qx,qy,x1,x2,y1,y2,
	root[P][M],ln[maxn],rn[maxn],sum[maxn],ll=0,pos[P][N],pcnt[P];
pii e[N];
char op[10];

inline int newnode(int o)
{
	int p=++ll;
	ln[p]=ln[o];rn[p]=rn[o];sum[p]=sum[o];
	return p;
}

int insert(int o,int x)
{
	int l=1,r=M-10,mid,p=newnode(o),q=p,*ch;
	sum[p]++;
	while (l<r)
	{
		mid=l+r>>1;
		if (x<=mid) ch=ln,r=mid;
		else ch=rn,l=mid+1;
		ch[p]=newnode(ch[o]);
		p=ch[p];o=ch[o];
		sum[p]++;
	}
	return q;
}

void build(int id)
{
	int *rt=root[id],&ct=pcnt[id],*ps=pos[id],l=rl[id-1]+1,r=rl[id];
	sort(e+l,e+r+1);
	rt[ct=1]=insert(0,e[l].se),ps[1]=e[l].fi;
	for (int i=l+1;i<=r;i++)
	{
		if (e[i].fi!=e[i-1].fi) ps[++ct]=e[i].fi,rt[ct]=rt[ct-1];
		rt[ct]=insert(rt[ct],e[i].se);
	}
}

inline int find(int x,int id)
{
	int *ps=pos[id];
	if (x<ps[1]) return 0;
	if (x>=ps[pcnt[id]]) return pcnt[id];
	int l=1,r=pcnt[id],mid;
	while (l+1<r)
	{
		if (ps[mid=l+r>>1]<=x) l=mid;
		else r=mid;
	}
	return l;
}

int _l,_r,_ans;
void query(int o1,int o2,int l,int r)
{
	if (_l<=l&&r<=_r) {_ans+=sum[o2]-sum[o1];return;}
	int mid=l+r>>1;
	if (_l<=mid) query(ln[o1],ln[o2],l,mid);
	if (_r>mid) query(rn[o1],rn[o2],mid+1,r);
}

int query(int id)
{
	int *rt=root[id],rec=0;_ans=0;
	_l=y1;_r=y2;
	query(rt[find(x1,id)],rt[find(x2,id)],1,M-10);
	return _ans;
}

int main()
{
	n=read();q=read();
	for (int i=1;i<=n;i++) _a[i]=read(),e[i]=mp(_a[i]+i,_a[i]+A-i);
	for (int i=P-1;~i;i--) if (n&(1<<i)) rl[++pnum]=1<<i,rl[pnum]+=rl[pnum-1];
	for (int i=1;i<=pnum;i++) build(i);
	for (int i=1,x,k;i<=q;i++)
	{
		scanf("%s",op);x=read();k=read();
		if (op[0]=='M')
		{
			_a[x]=k;
			e[++n]=mp(k+x,k+A-x);
			while (pnum&&rl[pnum]-rl[pnum-1]==n-rl[pnum]) pnum--;
			rl[++pnum]=n;
			build(pnum);
		}
		else
		{
			qx=_a[x]+x;qy=_a[x]+A-x;
			x1=max(1,qx-k)-1;x2=min(M-10,qx+k);
			y1=max(1,qy-k);y2=min(M-10,qy+k);
			int ans=0;
			for (int i=1;i<=pnum;i++) ans+=query(i);
			printf("%d\n",ans);
		}
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值