- 博客(137)
- 收藏
- 关注
原创 YOLOv11融合特征细化前馈网络 FRFN[CVPR2024]及相关改进思路
论文速览:基于 transformer 的方法在图像恢复任务中取得了有希望的性能,因为它们能够对长距离依赖性进行建模,这对于恢复清晰图像至关重要。尽管不同的高效注意力机制设计已经解决了与使用 transformer 相关的密集计算,但它们通常涉及冗余信息和来自不相关区域的嘈杂交互,因为要考虑所有可用的标记。在这项工作中,作者提出了一种自适应稀疏变压器 (AST) 来减轻不相关区域的噪声交互,并消除空间和通道域中的特征冗余。
2024-11-08 19:37:01 659
原创 YOLOv11融合IncepitonNeXt[CVPR2024]及相关改进思路
受 ViT 长距离建模能力的启发,大核卷积最近被广泛研究和采用,以扩大感受野并提高模型性能,例如采用 7x7 深度卷积的 ConvNeXt。虽然这种深度算子只消耗少量的 FLOPs,但内存访问成本高,在很大程度上损害了强大计算设备上的模型效率。例如, ConvNeXt-T 具有与 ResNet-50 类似的 FLOPs,但在 A100 GPU 上以全精度训练时,只能实现 60% 的吞吐量。虽然减小 ConvNeXt 的内核大小可以提高速度,但会导致性能显著下降。
2024-11-07 22:20:14 573
原创 深度学习模块创作(缝合)教程|适合1-360月小宝宝食用,干货满满
第二种层次也是论文用的最多的层次,就是将已经有的模块融入到现有的其他模块中,组成新的模块,像是增加、替换模块或结构。结构上,InceptionDWConv2d首先对输入的张量x切分,分别执行卷积核大小3×3、1×11、11×1的三组深度可分离卷积和一组恒等映射,既能感知多尺度特征,同时只对一部分x进行操作,减小了计算量,主要代码也很短,仅有简单的四行发顶会。这里比较典型的模块结构(网络)就是Resnet残差块,可以说没有何凯明的Resnet,深度学习难以发展到现在的高度,这也是深度学习的基石性研究。
2024-11-05 20:47:59 924
原创 YOLOv11入门到入土使用教程(含结构图)
YOLOv11是公司在之前的YOLO版本上推出的最新一代实时目标检测器,支持目标检测、追踪、实力分割、图像分类和姿态估计等任务。
2024-10-23 22:34:22 3291 1
原创 YOLOv10改进教程|C2f-CIB加入注意力机制
将yolov10n.yaml文件中的C2fCIB替换为C2fCIBAttention。在nn.models.__init__.py中声明 C2fCIBAttention。在train.py脚本中填入yolov10n.yaml路径,运行即可训练。打开ultralytics->nn->tasks.py,如图所示操作。并在上方声明C2fCIBAttention类。
2024-07-01 21:54:00 2816 3
原创 服务器训练YOLO模型不显示进度条
解决办法:以pycharm为例,点击调试旁边的选项按钮,在弹出的配置中点击“修改选项”,勾选“在输出控制台中模拟终端"即可。问题描述:通过pycharm或vscode使用ssh连接远程服务器训练,不显示训练进度条。
2024-06-28 22:49:14 334
原创 服务器安装opencv报ImportError: No module named cv2错误
问题描述:服务器已经安装了opencv-python 但是依旧报ImportError: No module named cv2错误。解决办法:服务器需要安装opencv-python-headless。
2024-06-28 22:43:30 209
原创 YOLOv10图形界面使用教程,含代码
使用需要安装opencv-python、torch、numpy及PySide6(python版本>=3.9)
2024-06-27 21:16:55 1009 2
原创 YOLOv10改进|加入AKConv
打开ultralytics->nn->modules->__init__.py,在第64行与81行加入AKConv进行声明。创建yaml文件,使用AKConv替换yaml文件中原有的Conv模块。在train.py脚本中填入创建好的yaml路径,运行即可训练。
2024-06-26 19:40:09 594
原创 YOLOv10使用教程及导读
论文摘要:在过去的几年里,由于有效的平衡了计算成本和检测性能,YOLO已经成为实时目标检测领域的主导范式。研究人员对yolo的架构设计、优化目标、数据增强策略等进行了探索,并取得了显著进展。然而,后处理中依赖的非最大抑制(NMS)阻碍了yolo的端到端部署,并对产生推理延迟。此外,YOLO中各部件的设计缺乏全面的检查,导致计算冗余明显,限制了模型的能力。它提供了次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构两个方面进一步推进YOLO模型的性能效率边界。
2024-06-25 23:32:46 2771 1
原创 YOLOv8/v10项目使用教程
打开ultralytics/cfg/models/v8路径,找到需要移植的yaml文件,从其中复制相关的模块。打开一个YOLOv10的yaml文件。注释掉之前相应位置的模块,并粘贴上面复制的模块,完成。其余使用步骤与YOLOv8项目相同,点击下方链接跳转。
2024-06-25 23:23:44 630
原创 深度学习工具|LabelImg(标注工具)的安装与使用教程
软件界面上包含了常用的打开文件、打开文件夹、更改保存路径、下一张/上一张图片、创建标注的格式、创建标注框等按钮,右侧显示从文件夹导入的文件列表、标签等信息。使用时可以进行如下设置,便于快速标注。
2024-06-24 20:39:17 10053
原创 [已解决]Unable to find a valid cUDNN algorithm to run convolution
问题描述:Unable to find a valid cUDNN algorithm to run convolution可能原因: 1、cuDNN库的配置问题。 2、未指定训练使用的显卡或显卡占用率已满。 3、确定性算法。解决方案:(从下往上试) 1、更新GPU驱动、cuDNN库。 2、禁用cuDNN。 3、更换卷积算法。 4、更换训练用的显卡。 5、禁用确定性算法
2024-05-16 20:49:04 384
原创 【已解决】AttributeError: module ‘clip‘ has no attribute ‘load‘
【代码】【已解决】AttributeError: module ‘clip‘ has no attribute ‘load‘
2024-05-16 07:00:00 1640 1
原创 RT-DETR改进教程|加入可改变核卷积AKConv模块,效果远超DSConv!
论文速览::AKConv是2023年11月发表的一种可变卷积核,赋予卷积核任意数量的参数和任意采样形状,以解决具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标的问题点可以为网络开销和性能之间的权衡提供更丰富的选择。AKConv的核心思想在于它为卷积核提供了任意数量的参数和任意采样形状,能够使用任意数量的参数(如1,2,3,4,5,6,7等)来提取姝征,这在标准卷积和可变形卷积中并未实现。AKConv能够根据硬件环境,使卷积参数的数星呈线性增减((非常适用于轻量化模型)。
2024-05-15 20:05:02 1436
原创 YOLOv8改进教程|加入可改变核卷积AKConv模块,效果远超DSConv!
论文速览::AKConv是2023年11月发表的一种可变卷积核,赋予卷积核任意数量的参数和任意采样形状,以解决具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标的问题点可以为网络开销和性能之间的权衡提供更丰富的选择。AKConv的核心思想在于它为卷积核提供了任意数量的参数和任意采样形状,能够使用任意数量的参数(如1,2,3,4,5,6,7等)来提取姝征,这在标准卷积和可变形卷积中并未实现。AKConv能够根据硬件环境,使卷积参数的数星呈线性增减((非常适用于轻量化模型)。
2024-05-15 20:04:14 3139 6
原创 YOLOv8改进教程|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!
CNN的最新进展主要致力于设计更复杂的架构来增强其表示学习能力。在本文中,我们考虑在不调整模型架构的情况下改进CNN的基本卷积特征转换过程。为此,我们提出了一种新的自校准卷积,通过内部通信显式扩展每个卷积层的视场,从而丰富输出特征。特别是,与使用小核(例如3 × 3)融合空间和通道信息的标准卷积不同,我们的自校准卷积通过一种新的自校准操作,自适应地在每个空间位置周围构建远程空间和通道间依赖关系。因此,它可以通过显式地结合更丰富的信息来帮助CNN生成更具判别性的表示。
2024-05-14 22:14:58 1577
原创 RT-DETR改进教程|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!
CNN的最新进展主要致力于设计更复杂的架构来增强其表示学习能力。在本文中,我们考虑在不调整模型架构的情况下改进CNN的基本卷积特征转换过程。为此,我们提出了一种新的自校准卷积,通过内部通信显式扩展每个卷积层的视场,从而丰富输出特征。特别是,与使用小核(例如3 × 3)融合空间和通道信息的标准卷积不同,我们的自校准卷积通过一种新的自校准操作,自适应地在每个空间位置周围构建远程空间和通道间依赖关系。因此,它可以通过显式地结合更丰富的信息来帮助CNN生成更具判别性的表示。
2024-05-14 20:33:18 1475 2
原创 YOLO数据集制作(四)|json文件转txt验证(多边形框)
使用方式:将img_path和label_path分别填入对应的图片(文件夹)及标签(文件夹)路径,运行。show_num参数控制最大展示数量,按空格切换。以下教程用于验证转成YOLO使用的txt格式,适用场景:多边形框,配合json格式文件转成YOLO使用的txt格式脚本使用。
2024-05-13 23:26:14 470
原创 YOLO数据集制作(三)|Labelme标注的“多边形框”json文件转txt
【代码】YOLO数据集制作(三)|Labelme标注的“多边形框”json文件转txt。
2024-05-12 20:22:40 944 1
原创 UserWarning: nn.init.kaiming_normal is now deprecated in favor of nn.init.kaiming_normal_.
UserWarning: nn.init.XXX现在已弃用,取而代之的是nn.init.XXX。现在已弃用,取而代之的是nn.init.新版的初始化名称在旧版的最后加上了一个“”,将使用的方法后加上 _。
2024-05-11 11:22:57 332
原创 YOLO数据集制作(一)|Labelme标注的矩形框json文件转txt
【代码】YOLO数据集制作(一)|Labelme标注的矩形框json文件转txt。
2024-05-10 21:12:49 946
原创 YOLOv9中模块总结补充|RepNCSPELAN4详图
RepNCSPELAN4是YOLOv9中的特征提取-融合模块,类似前几代YOLO中的C3、C2f等模块。RepNCSPELAN4主要由Conv与ReoNCSP组成,其中的ReoNCSP结构上形似C3与C2f模块,ReoNCSP由Conv与数量不等的RepNBottleneck模块组成,RepNBottleneck的个数由模型的宽度因子决定,RepNBottleneck是一个具有残差结构的基础模块,如下图。
2024-05-09 22:20:21 4058
原创 YOLOv9中模块总结补充|SPPELAN
SPPELAN是YOLOv9作者在SPPF的基础上创新的模块(增加了一次最大池化),整体结构及代码如下,代码中SP模块即为最大池化。
2024-05-09 21:05:55 2684 2
原创 模块整理!YOLOv9中的“Silence”、“RepNCSPELAN4”、“ADown”、“CBLinear”创新模块汇总!
本文对YOLOv9中出现的新模块进行整理。
2024-05-08 22:18:57 2530 1
原创 [已解决]ModuleNotFoundError: No module named ‘skimage‘
【代码】[已解决]ModuleNotFoundError: No module named ‘skimage‘
2024-04-24 19:35:49 454 2
原创 【已解决】ModuleNotFoundError: No module named ‘mmcv‘
问题描述:ModuleNotFoundError: No module named ‘mmcv‘
2024-04-20 11:30:00 2889
原创 【已解决】AttributeError: ‘PIL.Image‘ object has no attribute ‘ANTIALIAS‘
问题描述:使用PIL包的时候报错AttributeError: ‘PIL.Image‘ object has no attribute ‘ANTIALIAS‘解决办法一:将PIL.Image.ANTIALIAS(Image.ANTIALIAS)改为PIL.Image.LANCZOS(Image.LANCZOS).分析原因:PIL高版本的Image类中移除了ANTIALIAS方法。解决方法二:降低pillow的版本。
2024-04-20 10:30:00 563
原创 [已解决]ModuleNotFoundError: No module named ‘pywt‘
问题描述:ModuleNotFoundError: No module named 'pywt'安装成功后仍然报错的话,继续安装pywavelets包。解决办法:安装pywt包。
2024-04-19 22:11:53 1982
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人