数组题目:分割数组

题目

标题和出处

标题:分割数组

出处:915. 分割数组

难度

5 级

题目描述

要求

给定一个数组 nums \texttt{nums} nums,将其划分为两个不相交(没有公共元素)的连续子数组 left \texttt{left} left right \texttt{right} right,使得:

  • left \texttt{left} left 中的每个元素都小于或等于 right \texttt{right} right 中的每个元素。
  • left \texttt{left} left right \texttt{right} right 都是非空的。
  • left \texttt{left} left 要尽可能小。

在完成这样的分组后返回 left \texttt{left} left长度。可以保证存在这样的划分方法。

示例

示例 1:

输入: nums   =   [5,0,3,8,6] \texttt{nums = [5,0,3,8,6]} nums = [5,0,3,8,6]
输出: 3 \texttt{3} 3
解释: left   =   [5,0,3],   right   =   [8,6] \texttt{left = [5,0,3], right = [8,6]} left = [5,0,3], right = [8,6]

示例 2:

输入: nums   =   [1,1,1,0,6,12] \texttt{nums = [1,1,1,0,6,12]} nums = [1,1,1,0,6,12]
输出: 4 \texttt{4} 4
解释: left   =   [1,1,1,0],   right   =   [6,12] \texttt{left = [1,1,1,0], right = [6,12]} left = [1,1,1,0], right = [6,12]

数据范围

  • 2 ≤ nums.length ≤ 30000 \texttt{2} \le \texttt{nums.length} \le \texttt{30000} 2nums.length30000
  • 0 ≤ nums[i] ≤ 10 6 \texttt{0} \le \texttt{nums[i]} \le \texttt{10}^\texttt{6} 0nums[i]106
  • 可以保证至少有一种方法能够按题目所描述的那样对 nums \texttt{nums} nums 进行划分

解法

思路和算法

这道题要求将数组 nums \textit{nums} nums 分成两个不相交的非空子数组 left \textit{left} left right \textit{right} right,且 left \textit{left} left 中的每个元素都小于或等于 right \textit{right} right 中的每个元素,同时要求 left \textit{left} left 尽可能小。

朴素的做法是遍历每一种可能的划分,并判断划分是否符合要求。假设数组 nums \textit{nums} nums 的长度是 n n n,则有 n − 1 n-1 n1 种可能的划分,对于每一种可能的划分,需要 O ( n ) O(n) O(n) 的时间判断是否符合要求,总时间复杂度是 O ( n 2 ) O(n^2) O(n2),会超出时间限制,因此必须优化。

子数组 left \textit{left} left 中的每个元素都小于或等于子数组 right \textit{right} right 中的每个元素,等价于子数组 left \textit{left} left 中的最大元素小于或等于子数组 right \textit{right} right 中的最小元素。如果能得到 left \textit{left} left 中的最大元素和 right \textit{right} right 中的最小元素,就能判断划分是否符合要求。

创建长度为 n n n 的数组 minRight \textit{minRight} minRight,其中 minRight [ i ] \textit{minRight}[i] minRight[i] 表示数组 nums \textit{nums} nums 从下标 i i i 到末尾的子数组中的最小元素。显然 minRight [ n − 1 ] = nums [ n − 1 ] \textit{minRight}[n-1]=\textit{nums}[n-1] minRight[n1]=nums[n1],当 0 ≤ i < n − 1 0 \le i<n-1 0i<n1 时, minRight [ i ] = min ⁡ ( minRight [ i + 1 ] , nums [ i ] ) \textit{minRight}[i]=\min(\textit{minRight}[i+1],\textit{nums}[i]) minRight[i]=min(minRight[i+1],nums[i])。从后往前遍历数组 nums \textit{nums} nums,即可得到 minRight \textit{minRight} minRight 的每个元素值。

再从前往后遍历数组 nums \textit{nums} nums,并维护最大元素 maxLeft \textit{maxLeft} maxLeft。维护 maxLeft \textit{maxLeft} maxLeft 的思路和维护 minRight \textit{minRight} minRight 的思路类似,区别在于 maxLeft \textit{maxLeft} maxLeft 只存储一个数而不是数组。

假设 left \textit{left} left 对应的 nums \textit{nums} nums 的下标范围是 [ 0 , i ] [0,i] [0,i] right \textit{right} right 对应的 nums \textit{nums} nums 的下标范围是 [ i + 1 , n − 1 ] [i+1,n-1] [i+1,n1],其中 0 ≤ i < n − 1 0 \le i<n-1 0i<n1,则当 left \textit{left} left 中的每个元素都小于或等于 right \textit{right} right 中的每个元素时,有 maxLeft ≤ minRight [ i + 1 ] \textit{maxLeft} \le \textit{minRight}[i+1] maxLeftminRight[i+1]。为了使 left \textit{left} left 尽可能小, i i i 应该尽可能小。

由此可以得到以下做法:在得到数组 minRight \textit{minRight} minRight 之后,从前往后遍历数组 nums \textit{nums} nums 并维护最大元素 maxLeft \textit{maxLeft} maxLeft,找到第一个满足 maxLeft ≤ minRight [ i + 1 ] \textit{maxLeft} \le \textit{minRight}[i+1] maxLeftminRight[i+1] 的下标 i i i,则 left \textit{left} left 对应的 nums \textit{nums} nums 的下标范围是 [ 0 , i ] [0,i] [0,i] left \textit{left} left 的长度是 i + 1 i+1 i+1。由于是从前往后遍历,因此遇到的第一个符合要求的下标 i i i 对应的 left \textit{left} left 的长度是最小的。

代码

class Solution {
    public int partitionDisjoint(int[] nums) {
        int length = nums.length;
        int[] minRight = new int[length];
        minRight[length - 1] = nums[length - 1];
        for (int i = length - 2; i >= 0; i--) {
            minRight[i] = Math.min(minRight[i + 1], nums[i]);
        }
        int maxLeft = Integer.MIN_VALUE;
        for (int i = 0; i < length - 1; i++) {
            maxLeft = Math.max(maxLeft, nums[i]);
            if (maxLeft <= minRight[i + 1]) {
                return i + 1;
            }
        }
        return length - 1;
    }
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要反向遍历数组 nums \textit{nums} nums 得到数组 minRight \textit{minRight} minRight 的值,然后正向遍历数组 nums \textit{nums} nums 得到最左边的分割点,因此总时间复杂度是 O ( n ) O(n) O(n)

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要创建长度为 n n n 的数组 minRight \textit{minRight} minRight

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伟大的车尔尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值