题目
标题和出处
标题:分割数组
出处:915. 分割数组
难度
5 级
题目描述
要求
给定一个数组 nums \texttt{nums} nums,将其划分为两个不相交(没有公共元素)的连续子数组 left \texttt{left} left 和 right \texttt{right} right,使得:
- left \texttt{left} left 中的每个元素都小于或等于 right \texttt{right} right 中的每个元素。
- left \texttt{left} left 和 right \texttt{right} right 都是非空的。
- left \texttt{left} left 要尽可能小。
在完成这样的分组后返回 left \texttt{left} left 的长度。可以保证存在这样的划分方法。
示例
示例 1:
输入:
nums
=
[5,0,3,8,6]
\texttt{nums = [5,0,3,8,6]}
nums = [5,0,3,8,6]
输出:
3
\texttt{3}
3
解释:
left
=
[5,0,3],
right
=
[8,6]
\texttt{left = [5,0,3], right = [8,6]}
left = [5,0,3], right = [8,6]
示例 2:
输入:
nums
=
[1,1,1,0,6,12]
\texttt{nums = [1,1,1,0,6,12]}
nums = [1,1,1,0,6,12]
输出:
4
\texttt{4}
4
解释:
left
=
[1,1,1,0],
right
=
[6,12]
\texttt{left = [1,1,1,0], right = [6,12]}
left = [1,1,1,0], right = [6,12]
数据范围
- 2 ≤ nums.length ≤ 30000 \texttt{2} \le \texttt{nums.length} \le \texttt{30000} 2≤nums.length≤30000
- 0 ≤ nums[i] ≤ 10 6 \texttt{0} \le \texttt{nums[i]} \le \texttt{10}^\texttt{6} 0≤nums[i]≤106
- 可以保证至少有一种方法能够按题目所描述的那样对 nums \texttt{nums} nums 进行划分
解法
思路和算法
这道题要求将数组 nums \textit{nums} nums 分成两个不相交的非空子数组 left \textit{left} left 和 right \textit{right} right,且 left \textit{left} left 中的每个元素都小于或等于 right \textit{right} right 中的每个元素,同时要求 left \textit{left} left 尽可能小。
朴素的做法是遍历每一种可能的划分,并判断划分是否符合要求。假设数组 nums \textit{nums} nums 的长度是 n n n,则有 n − 1 n-1 n−1 种可能的划分,对于每一种可能的划分,需要 O ( n ) O(n) O(n) 的时间判断是否符合要求,总时间复杂度是 O ( n 2 ) O(n^2) O(n2),会超出时间限制,因此必须优化。
子数组 left \textit{left} left 中的每个元素都小于或等于子数组 right \textit{right} right 中的每个元素,等价于子数组 left \textit{left} left 中的最大元素小于或等于子数组 right \textit{right} right 中的最小元素。如果能得到 left \textit{left} left 中的最大元素和 right \textit{right} right 中的最小元素,就能判断划分是否符合要求。
创建长度为 n n n 的数组 minRight \textit{minRight} minRight,其中 minRight [ i ] \textit{minRight}[i] minRight[i] 表示数组 nums \textit{nums} nums 从下标 i i i 到末尾的子数组中的最小元素。显然 minRight [ n − 1 ] = nums [ n − 1 ] \textit{minRight}[n-1]=\textit{nums}[n-1] minRight[n−1]=nums[n−1],当 0 ≤ i < n − 1 0 \le i<n-1 0≤i<n−1 时, minRight [ i ] = min ( minRight [ i + 1 ] , nums [ i ] ) \textit{minRight}[i]=\min(\textit{minRight}[i+1],\textit{nums}[i]) minRight[i]=min(minRight[i+1],nums[i])。从后往前遍历数组 nums \textit{nums} nums,即可得到 minRight \textit{minRight} minRight 的每个元素值。
再从前往后遍历数组 nums \textit{nums} nums,并维护最大元素 maxLeft \textit{maxLeft} maxLeft。维护 maxLeft \textit{maxLeft} maxLeft 的思路和维护 minRight \textit{minRight} minRight 的思路类似,区别在于 maxLeft \textit{maxLeft} maxLeft 只存储一个数而不是数组。
假设 left \textit{left} left 对应的 nums \textit{nums} nums 的下标范围是 [ 0 , i ] [0,i] [0,i], right \textit{right} right 对应的 nums \textit{nums} nums 的下标范围是 [ i + 1 , n − 1 ] [i+1,n-1] [i+1,n−1],其中 0 ≤ i < n − 1 0 \le i<n-1 0≤i<n−1,则当 left \textit{left} left 中的每个元素都小于或等于 right \textit{right} right 中的每个元素时,有 maxLeft ≤ minRight [ i + 1 ] \textit{maxLeft} \le \textit{minRight}[i+1] maxLeft≤minRight[i+1]。为了使 left \textit{left} left 尽可能小, i i i 应该尽可能小。
由此可以得到以下做法:在得到数组 minRight \textit{minRight} minRight 之后,从前往后遍历数组 nums \textit{nums} nums 并维护最大元素 maxLeft \textit{maxLeft} maxLeft,找到第一个满足 maxLeft ≤ minRight [ i + 1 ] \textit{maxLeft} \le \textit{minRight}[i+1] maxLeft≤minRight[i+1] 的下标 i i i,则 left \textit{left} left 对应的 nums \textit{nums} nums 的下标范围是 [ 0 , i ] [0,i] [0,i], left \textit{left} left 的长度是 i + 1 i+1 i+1。由于是从前往后遍历,因此遇到的第一个符合要求的下标 i i i 对应的 left \textit{left} left 的长度是最小的。
代码
class Solution {
public int partitionDisjoint(int[] nums) {
int length = nums.length;
int[] minRight = new int[length];
minRight[length - 1] = nums[length - 1];
for (int i = length - 2; i >= 0; i--) {
minRight[i] = Math.min(minRight[i + 1], nums[i]);
}
int maxLeft = Integer.MIN_VALUE;
for (int i = 0; i < length - 1; i++) {
maxLeft = Math.max(maxLeft, nums[i]);
if (maxLeft <= minRight[i + 1]) {
return i + 1;
}
}
return length - 1;
}
}
复杂度分析
-
时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要反向遍历数组 nums \textit{nums} nums 得到数组 minRight \textit{minRight} minRight 的值,然后正向遍历数组 nums \textit{nums} nums 得到最左边的分割点,因此总时间复杂度是 O ( n ) O(n) O(n)。
-
空间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要创建长度为 n n n 的数组 minRight \textit{minRight} minRight。