图题目:可以到达所有点的最少点数目

文章讨论了如何在给定的有向无环图中找到最少数量的点,使得从这些点出发可以到达所有其他点。关键在于识别入度为零的节点,它们必须包含在结果集中,而其他非零入度节点不应被选中。通过遍历边并记录节点入度,算法的时间复杂度为O(n+m)。
摘要由CSDN通过智能技术生成

题目

标题和出处

标题:可以到达所有点的最少点数目

出处:1557. 可以到达所有点的最少点数目

难度

4 级

题目描述

要求

给定一个有向无环图,包含编号为 0 \texttt{0} 0 n − 1 \texttt{n} - \texttt{1} n1 n \texttt{n} n 个结点,以及一个数组 edges \texttt{edges} edges,其中 edges[i]   =   [from i ,   to i ] \texttt{edges[i] = [from}_\texttt{i}\texttt{, to}_\texttt{i}\texttt{]} edges[i] = [fromi, toi] 表示一条从点 from i \texttt{from}_\texttt{i} fromi 到点 to i \texttt{to}_\texttt{i} toi 的有向边。

找到最小的点集使得从这些点出发能到达图中所有点。题目保证解存在且唯一。

可以按任意顺序返回这些结点编号。

示例

示例 1:

示例 1

输入: n   =   6,   edges   =   [[0,1],[0,2],[2,5],[3,4],[4,2]] \texttt{n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]} n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]
输出: [0,3] \texttt{[0,3]} [0,3]
解释:从单个结点出发无法到达所有结点。从 0 \texttt{0} 0 出发我们可以到达 [0,1,2,5] \texttt{[0,1,2,5]} [0,1,2,5]。从 3 \texttt{3} 3 出发我们可以到达 [3,4,2,5] \texttt{[3,4,2,5]} [3,4,2,5]。所以我们输出 [0,3] \texttt{[0,3]} [0,3]

示例 2:

示例 2

输入: n   =   5,   edges   =   [[0,1],[2,1],[3,1],[1,4],[2,4]] \texttt{n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]} n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]
输出: [0,2,3] \texttt{[0,2,3]} [0,2,3]
解释:注意到结点 0 \texttt{0} 0 2 \texttt{2} 2 3 \texttt{3} 3 无法从其他结点到达,所以我们必须将它们包含在结果点集中,这些点都能到达结点 1 \texttt{1} 1 4 \texttt{4} 4

数据范围

  • 2 ≤ n ≤ 10 5 \texttt{2} \le \texttt{n} \le \texttt{10}^\texttt{5} 2n105
  • 1 ≤ edges.length ≤ min(10 5 ,   n × (n − 1) 2 ) \texttt{1} \le \texttt{edges.length} \le \texttt{min(10}^\texttt{5}\texttt{, }\dfrac{\texttt{n} \times \texttt{(n} - \texttt{1)}}{\texttt{2}}\texttt{)} 1edges.lengthmin(1052n×(n1))
  • edges[i].length = 2 \texttt{edges[i].length} = \texttt{2} edges[i].length=2
  • 0 ≤ from i ,   to i < n \texttt{0} \le \texttt{from}_\texttt{i}\texttt{, to}_\texttt{i} < \texttt{n} 0fromi, toi<n
  • 所有点对 (from i ,   to i ) \texttt{(from}_\texttt{i}\texttt{, to}_\texttt{i}\texttt{)} (fromi, toi) 互不相同

解法

思路和算法

考虑有向图中的每个结点的入度。如果结点 x x x 的入度为零,则无法从其他结点出发到达结点 x x x,因此结点 x x x 必须包含在结果点集中。如果结点 y y y 的入度不为零,则一定存在一条终点是结点 y y y 的边,将这条边的起点记为结点 z z z,则从结点 z z z 出发可以到达结点 y y y,且从结点 z z z 出发可以到达的结点比从结点 y y y 出发可以到达的结点更多,将结点 z z z 加入结果点集一定比将结点 y y y 加入结果点集更优。

由于给定的图是有向无环图,因此基于上述分析可知,对于任意入度不为零的结点,一定存在另一个结点,从另一个结点出发可以到达该结点。进一步可知,任意入度不为零的结点一定可以从一个入度为零的结点出发到达。

因此,为了得到最小的点集,所有入度为零的结点都应该加入结果点集,所有入度不为零的结点都不应该加入结果点集。

实现方面,并不需要计算每个结点的入度,只需要知道每个结点的入度是否为零即可。每条有向边有一个出发结点和到达结点,如果一个结点至少是一条有向边的到达结点,则该结点的入度一定不为零。遍历有向图中的全部边之后即可知道每个结点的入度是否为零,然后将所有入度为零的结点加入结果点集,则结果点集是最小的点集。

代码

class Solution {
    public List<Integer> findSmallestSetOfVertices(int n, List<List<Integer>> edges) {
        boolean[] zeroIndegree = new boolean[n];
        Arrays.fill(zeroIndegree, true);
        for (List<Integer> edge : edges) {
            zeroIndegree[edge.get(1)] = false;
        }
        List<Integer> vertices = new ArrayList<Integer>();
        for (int i = 0; i < n; i++) {
            if (zeroIndegree[i]) {
                vertices.add(i);
            }
        }
        return vertices;
    }
}

复杂度分析

  • 时间复杂度: O ( n + m ) O(n + m) O(n+m),其中 n n n 是图的结点数, m m m 是数组 edges \textit{edges} edges 的长度。需要遍历图中的每条边和每个结点一次。

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是图的结点数。需要记录每个结点的入度是否为零。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伟大的车尔尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值