题目
标题和出处
标题:可以到达所有点的最少点数目
难度
4 级
题目描述
要求
给定一个有向无环图,包含编号为 0 \texttt{0} 0 到 n − 1 \texttt{n} - \texttt{1} n−1 的 n \texttt{n} n 个结点,以及一个数组 edges \texttt{edges} edges,其中 edges[i] = [from i , to i ] \texttt{edges[i] = [from}_\texttt{i}\texttt{, to}_\texttt{i}\texttt{]} edges[i] = [fromi, toi] 表示一条从点 from i \texttt{from}_\texttt{i} fromi 到点 to i \texttt{to}_\texttt{i} toi 的有向边。
找到最小的点集使得从这些点出发能到达图中所有点。题目保证解存在且唯一。
可以按任意顺序返回这些结点编号。
示例
示例 1:
输入:
n
=
6,
edges
=
[[0,1],[0,2],[2,5],[3,4],[4,2]]
\texttt{n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]}
n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]
输出:
[0,3]
\texttt{[0,3]}
[0,3]
解释:从单个结点出发无法到达所有结点。从
0
\texttt{0}
0 出发我们可以到达
[0,1,2,5]
\texttt{[0,1,2,5]}
[0,1,2,5]。从
3
\texttt{3}
3 出发我们可以到达
[3,4,2,5]
\texttt{[3,4,2,5]}
[3,4,2,5]。所以我们输出
[0,3]
\texttt{[0,3]}
[0,3]。
示例 2:
输入:
n
=
5,
edges
=
[[0,1],[2,1],[3,1],[1,4],[2,4]]
\texttt{n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]}
n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]
输出:
[0,2,3]
\texttt{[0,2,3]}
[0,2,3]
解释:注意到结点
0
\texttt{0}
0、
2
\texttt{2}
2 和
3
\texttt{3}
3 无法从其他结点到达,所以我们必须将它们包含在结果点集中,这些点都能到达结点
1
\texttt{1}
1 和
4
\texttt{4}
4。
数据范围
- 2 ≤ n ≤ 10 5 \texttt{2} \le \texttt{n} \le \texttt{10}^\texttt{5} 2≤n≤105
- 1 ≤ edges.length ≤ min(10 5 , n × (n − 1) 2 ) \texttt{1} \le \texttt{edges.length} \le \texttt{min(10}^\texttt{5}\texttt{, }\dfrac{\texttt{n} \times \texttt{(n} - \texttt{1)}}{\texttt{2}}\texttt{)} 1≤edges.length≤min(105, 2n×(n−1))
- edges[i].length = 2 \texttt{edges[i].length} = \texttt{2} edges[i].length=2
- 0 ≤ from i , to i < n \texttt{0} \le \texttt{from}_\texttt{i}\texttt{, to}_\texttt{i} < \texttt{n} 0≤fromi, toi<n
- 所有点对 (from i , to i ) \texttt{(from}_\texttt{i}\texttt{, to}_\texttt{i}\texttt{)} (fromi, toi) 互不相同
解法
思路和算法
考虑有向图中的每个结点的入度。如果结点 x x x 的入度为零,则无法从其他结点出发到达结点 x x x,因此结点 x x x 必须包含在结果点集中。如果结点 y y y 的入度不为零,则一定存在一条终点是结点 y y y 的边,将这条边的起点记为结点 z z z,则从结点 z z z 出发可以到达结点 y y y,且从结点 z z z 出发可以到达的结点比从结点 y y y 出发可以到达的结点更多,将结点 z z z 加入结果点集一定比将结点 y y y 加入结果点集更优。
由于给定的图是有向无环图,因此基于上述分析可知,对于任意入度不为零的结点,一定存在另一个结点,从另一个结点出发可以到达该结点。进一步可知,任意入度不为零的结点一定可以从一个入度为零的结点出发到达。
因此,为了得到最小的点集,所有入度为零的结点都应该加入结果点集,所有入度不为零的结点都不应该加入结果点集。
实现方面,并不需要计算每个结点的入度,只需要知道每个结点的入度是否为零即可。每条有向边有一个出发结点和到达结点,如果一个结点至少是一条有向边的到达结点,则该结点的入度一定不为零。遍历有向图中的全部边之后即可知道每个结点的入度是否为零,然后将所有入度为零的结点加入结果点集,则结果点集是最小的点集。
代码
class Solution {
public List<Integer> findSmallestSetOfVertices(int n, List<List<Integer>> edges) {
boolean[] zeroIndegree = new boolean[n];
Arrays.fill(zeroIndegree, true);
for (List<Integer> edge : edges) {
zeroIndegree[edge.get(1)] = false;
}
List<Integer> vertices = new ArrayList<Integer>();
for (int i = 0; i < n; i++) {
if (zeroIndegree[i]) {
vertices.add(i);
}
}
return vertices;
}
}
复杂度分析
-
时间复杂度: O ( n + m ) O(n + m) O(n+m),其中 n n n 是图的结点数, m m m 是数组 edges \textit{edges} edges 的长度。需要遍历图中的每条边和每个结点一次。
-
空间复杂度: O ( n ) O(n) O(n),其中 n n n 是图的结点数。需要记录每个结点的入度是否为零。