排序实现题目:排序链表

题目

标题和出处

标题:排序链表

出处:148. 排序链表

难度

6 级

题目描述

要求

给定链表的头结点 head \texttt{head} head,请将其按升序排序,并返回排序后的链表。

示例

示例 1:

示例 1

输入: head   =   [4,2,1,3] \texttt{head = [4,2,1,3]} head = [4,2,1,3]
输出: [1,2,3,4] \texttt{[1,2,3,4]} [1,2,3,4]

示例 2:

示例 2

输入: head   =   [-1,5,3,4,0] \texttt{head = [-1,5,3,4,0]} head = [-1,5,3,4,0]
输出: [-1,0,3,4,5] \texttt{[-1,0,3,4,5]} [-1,0,3,4,5]

示例 3:

输入: head   =   [] \texttt{head = []} head = []
输出: [] \texttt{[]} []

数据范围

  • 链表中结点的数目范围是 [0,   5 × 10 4 ] \texttt{[0, 5} \times \texttt{10}^\texttt{4}\texttt{]} [0, 5×104]
  • -10 5 ≤ Node.val ≤ 10 5 \texttt{-10}^\texttt{5} \le \texttt{Node.val} \le \texttt{10}^\texttt{5} -105Node.val105

进阶

你可以在 O(n   log   n) \texttt{O(n log n)} O(n log n) 时间复杂度和 O(1) \texttt{O(1)} O(1)(常数级)空间复杂度下,对链表进行排序吗?

前言

由于链表的结构不同于数组,因此适用于链表的排序种类较少。这道题中,链表的长度最大为 5 × 1 0 4 5 \times 10^4 5×104,因此时间复杂度是 O ( n 2 ) O(n^2) O(n2) 的排序算法不适合这道题,需要使用时间复杂度更低的排序算法。根据链表的性质,可以使用归并排序对链表排序。归并排序的时间复杂度是 O ( n log ⁡ n ) O(n \log n) O(nlogn),自顶向下实现和自底向上实现的空间复杂度分别是 O ( log ⁡ n ) O(\log n) O(logn) O ( 1 ) O(1) O(1)

解法一

思路和算法

归并排序使用分治的思想。对链表归并排序,首先将链表拆分成多个不相交的子链表,对每个子链表排序,然后将排序后的子链表合并,合并过程中确保合并后的子链表仍然有序。合并结束之后,整个链表排序结束。

使用自顶向下的方式实现时,首先判断链表的长度是否需要拆分。如果链表的长度是 0 0 0(即链表为空)或 1 1 1,则不需要拆分,此时链表已经有序,因此直接返回链表。

当链表的长度大于 1 1 1 时,需要将链表拆分成两个子链表,对两个子链表分别排序,然后将排序后的两个子链表合并。具体做法如下。

  1. 找到链表的中间结点。使用快慢指针法,做法和「链表的中间结点」相似,但是有所区别,初始时将快指针置于慢指针前面一个位置,当快指针到达末尾时,慢指针到达中间结点,当链表长度是偶数时慢指针将到达左边的中间结点。
  2. 将中间结点的后一个结点作为第二个子链表的头结点,将中间结点和后一个结点之间的连接断开,此时链表拆分成两个子链表且两个子链表的长度之差不超过 1 1 1
  3. 对两个子链表调用递归完成排序。
  4. 将排序后的两个子链表合并,使用「合并两个有序链表」的做法。

代码

class Solution {
    public ListNode sortList(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }
        ListNode slow = head, fast = head.next;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        ListNode head2 = slow.next;
        slow.next = null;
        ListNode l1 = sortList(head);
        ListNode l2 = sortList(head2);
        return mergeTwoLists(l1, l2);
    }

    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        ListNode dummyHead = new ListNode(0);
        ListNode temp = dummyHead;
        while (l1 != null && l2 != null) {
            if (l1.val <= l2.val) {
                temp.next = l1;
                l1 = l1.next;
            } else {
                temp.next = l2;
                l2 = l2.next;
            }
            temp = temp.next;
        }
        if (l1 != null) {
            temp.next = l1;
        } else {
            temp.next = l2;
        }
        return dummyHead.next;
    }
}

复杂度分析

  • 时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn),其中 n n n 是链表的长度。

  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 是链表的长度。空间复杂度主要取决于递归调用的栈空间,递归调用栈的深度是 O ( log ⁡ n ) O(\log n) O(logn)

解法二

思路和算法

使用自底向上的方式实现,可以省略递归调用的栈空间,将空间复杂度降低到 O ( 1 ) O(1) O(1)

首先遍历链表得到链表的长度,然后从长度是 1 1 1 的子链表开始合并。将每两个相邻的子链表合并,使用「合并两个有序链表」的做法。然后将子链表的长度乘以 2 2 2,重复上述合并操作,直到所有的子链表合并成一个链表时,排序结束。

代码

class Solution {
    public ListNode sortList(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }
        int length = 0;
        ListNode node = head;
        while (node != null) {
            length++;
            node = node.next;
        }
        ListNode dummyHead = new ListNode(0, head);
        for (int halfLength = 1; halfLength < length; halfLength *= 2) {
            ListNode prev = dummyHead, curr = dummyHead.next;
            while (curr != null) {
                ListNode l1 = curr;
                for (int i = 1; i < halfLength && curr.next != null; i++) {
                    curr = curr.next;
                }
                ListNode l2 = curr.next;
                curr.next = null;
                curr = l2;
                for (int i = 1; i < halfLength && curr != null && curr.next != null; i++) {
                    curr = curr.next;
                }
                ListNode next = null;
                if (curr != null) {
                    next = curr.next;
                    curr.next = null;
                }
                ListNode merged = mergeTwoLists(l1, l2);
                prev.next = merged;
                while (prev.next != null) {
                    prev = prev.next;
                }
                curr = next;
            }
        }
        return dummyHead.next;
    }

    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        ListNode dummyHead = new ListNode(0);
        ListNode temp = dummyHead;
        while (l1 != null && l2 != null) {
            if (l1.val <= l2.val) {
                temp.next = l1;
                l1 = l1.next;
            } else {
                temp.next = l2;
                l2 = l2.next;
            }
            temp = temp.next;
        }
        if (l1 != null) {
            temp.next = l1;
        } else {
            temp.next = l2;
        }
        return dummyHead.next;
    }
}

复杂度分析

  • 时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn),其中 n n n 是链表的长度。

  • 空间复杂度: O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伟大的车尔尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值