题目
标题和出处
标题:排序链表
出处:148. 排序链表
难度
6 级
题目描述
要求
给定链表的头结点 head \texttt{head} head,请将其按升序排序,并返回排序后的链表。
示例
示例 1:
输入:
head
=
[4,2,1,3]
\texttt{head = [4,2,1,3]}
head = [4,2,1,3]
输出:
[1,2,3,4]
\texttt{[1,2,3,4]}
[1,2,3,4]
示例 2:
输入:
head
=
[-1,5,3,4,0]
\texttt{head = [-1,5,3,4,0]}
head = [-1,5,3,4,0]
输出:
[-1,0,3,4,5]
\texttt{[-1,0,3,4,5]}
[-1,0,3,4,5]
示例 3:
输入:
head
=
[]
\texttt{head = []}
head = []
输出:
[]
\texttt{[]}
[]
数据范围
- 链表中结点的数目范围是 [0, 5 × 10 4 ] \texttt{[0, 5} \times \texttt{10}^\texttt{4}\texttt{]} [0, 5×104]
- -10 5 ≤ Node.val ≤ 10 5 \texttt{-10}^\texttt{5} \le \texttt{Node.val} \le \texttt{10}^\texttt{5} -105≤Node.val≤105
进阶
你可以在 O(n log n) \texttt{O(n log n)} O(n log n) 时间复杂度和 O(1) \texttt{O(1)} O(1)(常数级)空间复杂度下,对链表进行排序吗?
前言
由于链表的结构不同于数组,因此适用于链表的排序种类较少。这道题中,链表的长度最大为 5 × 1 0 4 5 \times 10^4 5×104,因此时间复杂度是 O ( n 2 ) O(n^2) O(n2) 的排序算法不适合这道题,需要使用时间复杂度更低的排序算法。根据链表的性质,可以使用归并排序对链表排序。归并排序的时间复杂度是 O ( n log n ) O(n \log n) O(nlogn),自顶向下实现和自底向上实现的空间复杂度分别是 O ( log n ) O(\log n) O(logn) 和 O ( 1 ) O(1) O(1)。
解法一
思路和算法
归并排序使用分治的思想。对链表归并排序,首先将链表拆分成多个不相交的子链表,对每个子链表排序,然后将排序后的子链表合并,合并过程中确保合并后的子链表仍然有序。合并结束之后,整个链表排序结束。
使用自顶向下的方式实现时,首先判断链表的长度是否需要拆分。如果链表的长度是 0 0 0(即链表为空)或 1 1 1,则不需要拆分,此时链表已经有序,因此直接返回链表。
当链表的长度大于 1 1 1 时,需要将链表拆分成两个子链表,对两个子链表分别排序,然后将排序后的两个子链表合并。具体做法如下。
- 找到链表的中间结点。使用快慢指针法,做法和「链表的中间结点」相似,但是有所区别,初始时将快指针置于慢指针前面一个位置,当快指针到达末尾时,慢指针到达中间结点,当链表长度是偶数时慢指针将到达左边的中间结点。
- 将中间结点的后一个结点作为第二个子链表的头结点,将中间结点和后一个结点之间的连接断开,此时链表拆分成两个子链表且两个子链表的长度之差不超过 1 1 1。
- 对两个子链表调用递归完成排序。
- 将排序后的两个子链表合并,使用「合并两个有序链表」的做法。
代码
class Solution {
public ListNode sortList(ListNode head) {
if (head == null || head.next == null) {
return head;
}
ListNode slow = head, fast = head.next;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
ListNode head2 = slow.next;
slow.next = null;
ListNode l1 = sortList(head);
ListNode l2 = sortList(head2);
return mergeTwoLists(l1, l2);
}
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode dummyHead = new ListNode(0);
ListNode temp = dummyHead;
while (l1 != null && l2 != null) {
if (l1.val <= l2.val) {
temp.next = l1;
l1 = l1.next;
} else {
temp.next = l2;
l2 = l2.next;
}
temp = temp.next;
}
if (l1 != null) {
temp.next = l1;
} else {
temp.next = l2;
}
return dummyHead.next;
}
}
复杂度分析
-
时间复杂度: O ( n log n ) O(n \log n) O(nlogn),其中 n n n 是链表的长度。
-
空间复杂度: O ( log n ) O(\log n) O(logn),其中 n n n 是链表的长度。空间复杂度主要取决于递归调用的栈空间,递归调用栈的深度是 O ( log n ) O(\log n) O(logn)。
解法二
思路和算法
使用自底向上的方式实现,可以省略递归调用的栈空间,将空间复杂度降低到 O ( 1 ) O(1) O(1)。
首先遍历链表得到链表的长度,然后从长度是 1 1 1 的子链表开始合并。将每两个相邻的子链表合并,使用「合并两个有序链表」的做法。然后将子链表的长度乘以 2 2 2,重复上述合并操作,直到所有的子链表合并成一个链表时,排序结束。
代码
class Solution {
public ListNode sortList(ListNode head) {
if (head == null || head.next == null) {
return head;
}
int length = 0;
ListNode node = head;
while (node != null) {
length++;
node = node.next;
}
ListNode dummyHead = new ListNode(0, head);
for (int halfLength = 1; halfLength < length; halfLength *= 2) {
ListNode prev = dummyHead, curr = dummyHead.next;
while (curr != null) {
ListNode l1 = curr;
for (int i = 1; i < halfLength && curr.next != null; i++) {
curr = curr.next;
}
ListNode l2 = curr.next;
curr.next = null;
curr = l2;
for (int i = 1; i < halfLength && curr != null && curr.next != null; i++) {
curr = curr.next;
}
ListNode next = null;
if (curr != null) {
next = curr.next;
curr.next = null;
}
ListNode merged = mergeTwoLists(l1, l2);
prev.next = merged;
while (prev.next != null) {
prev = prev.next;
}
curr = next;
}
}
return dummyHead.next;
}
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode dummyHead = new ListNode(0);
ListNode temp = dummyHead;
while (l1 != null && l2 != null) {
if (l1.val <= l2.val) {
temp.next = l1;
l1 = l1.next;
} else {
temp.next = l2;
l2 = l2.next;
}
temp = temp.next;
}
if (l1 != null) {
temp.next = l1;
} else {
temp.next = l2;
}
return dummyHead.next;
}
}
复杂度分析
-
时间复杂度: O ( n log n ) O(n \log n) O(nlogn),其中 n n n 是链表的长度。
-
空间复杂度: O ( 1 ) O(1) O(1)。