操作系统线程理论
线程概念的引入背景
操作系统中的多线程
进程和线程的关系
线程的特点(了解)
用户级与内核级线程的对比
# 用户级线程和内核级线程的区别
'''
内核支持线程是OS内核可感知的,而用户级线程是OS内核不可感知的。
用户级线程的创建、撤消和调度不需要OS内核的支持,是在语言(如Java)这一级处理的;
而内核支持线程的创建、撤消和调度都需OS内核提供支持,而且与进程的创建、撤消和调度大体是相同的。
用户级线程执行系统调用指令时将导致其所属进程被中断,
而内核支持线程执行系统调用指令时,只导致该线程被中断。
在只有用户级线程的系统内,CPU调度还是以进程为单位,处于运行状态的进程中的多个线程,
由用户程序控制线程的轮换运行;在有内核支持线程的系统内,CPU调度则以线程为单位,
由OS的线程调度程序负责线程的调度。
用户级线程的程序实体是运行在用户态下的程序,
而内核支持线程的程序实体则是可以运行在任何状态下的程序。
'''
# 内核线程的优缺点
'''
优点:当有多个处理机时,一个进程的多个线程可以同时执行。
缺点:由内核进行调度。
'''
# 用户级线程的优缺点
'''
优点:
线程的调度不需要内核直接参与,控制简单。
可以在不支持线程的操作系统中实现。
创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。
允许每个进程定制自己的调度算法,线程管理比较灵活。
线程能够利用的表空间和堆栈空间比内核级线程多。
同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,
那么整个进程都会被挂起。另外,页面失效也会产生同样的问题。
缺点:
资源调度按照进程进行,多个处理机下,同一个进程中的线程只能在同一个处理机下分时复用
'''
Python中的线程
理论知识
GIL全局解释器锁
'''
GIL锁,全局解释器锁。用于限制一个进程中同一时刻只有一个线程被cpu调度。
扩展:默认GIL锁在执行100个cpu指令(过期时间)。
import sys
v1 = sys.getcheckinterval()
print(v1) # 100
'''
python线程模块的选择
threading模块
multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性
线程的创建Threading.Thread类
线程的创建
# 创建线程的方式1
from threading import Thread
import time
def sayhi(name):
time.sleep(2)
print('%s say hello' % name)
if __name__ == '__main__':
t = Thread(target=sayhi, args=('jaychou',))
t.start()
print('主线程') # 主线程默认等子线程执行完毕
# 创建线程的方式2--面向对象的方式
class Sayhi(Thread):
def __init__(self, name):
super().__init__()
self.name = name
def run(self):
time.sleep(2)
print('%s say hello' % self.name)
if __name__ == '__main__':
t = Sayhi('jaychou')
t.start()
print('主线程') # 主线程默认等子线程执行完毕
线程的本质
import threading
# 先打印:11?123?
def func(arg):
print(arg)
t1 = threading.Thread(target=func, args=(11,))
t1.start()
# start 是开始运行线程吗?不是
# start 告诉cpu,我已经准备就绪,你可以调度我了。
print(123)
不使用多线程和使用多线程对比
# 不使用
import requests
import uuid
url_list = [
'https://www3.autoimg.cn/newsdfs/g28/M05/F9/98/120x90_0_autohomecar__ChsEnluQmUmARAhAAAFES6mpmTM281.jpg',
'https://www2.autoimg.cn/newsdfs/g28/M09/FC/06/120x90_0_autohomecar__ChcCR1uQlD6AT4P3AAGRMJX7834274.jpg',
'https://www2.autoimg.cn/newsdfs/g3/M00/C6/A9/120x90_0_autohomecar__ChsEkVuPsdqAQz3zAAEYvWuAspI061.jpg',
]
def task(url):
ret = requests.get(url)
file_name = str(uuid.uuid4()) + '.jpg'
with open(file_name, mode='wb') as f:
f.write(ret.content)
for url in url_list:
task(url)
"""
- 你写好代码
- 交给解释器运行: python s1.py
- 解释器读取代码,再交给操作系统去执行,
根据你的代码去选择创建多少个线程/进程去执行(单进程/单线程)。
- 操作系统调用硬件:硬盘、cpu、网卡....
"""
# 使用
import threading
import requests
import uuid
url_list = [
'https://www3.autoimg.cn/newsdfs/g28/M05/F9/98/120x90_0_autohomecar__ChsEnluQmUmARAhAAAFES6mpmTM281.jpg',
'https://www2.autoimg.cn/newsdfs/g28/M09/FC/06/120x90_0_autohomecar__ChcCR1uQlD6AT4P3AAGRMJX7834274.jpg',
'https://www2.autoimg.cn/newsdfs/g3/M00/C6/A9/120x90_0_autohomecar__ChsEkVuPsdqAQz3zAAEYvWuAspI061.jpg',
]
def task(url):
ret = requests.get(url)
file_name = str(uuid.uuid4()) + '.jpg'
with open(file_name, mode='wb') as f:
f.write(ret.content)
for url in url_list:
t = threading.Thread(target=task, args=(url,))
t.start()
多线程与多进程
# pid的比较
from threading import Thread
from multiprocessing import Process
import os
def work():
print('hello', os.getpid())
if __name__ == '__main__':
# part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样
t1 = Thread(target=work)
t2 = Thread(target=work)
t1.start()
t2.start()
print('主线程/主进程pid', os.getpid())
# part2:开多个进程,每个进程都有不同的pid
p1 = Process(target=work)
p2 = Process(target=work)
p1.start()
p2.start()
print('主线程/主进程pid', os.getpid())
'''
hello 7860
hello 7860
主线程/主进程pid 7860
主线程/主进程pid 7860
hello 10036
hello 13944
'''
# 开启效率的较量
from threading import Thread
from multiprocessing import Process
import os
def work():
print('hello')
if __name__ == '__main__':
# 在主进程下开启线程
t = Thread(target=work)
t.start()
print('主线程/主进程')
'''
打印结果:
hello
主线程/主进程
'''
# 在主进程下开启子进程
t = Process(target=work)
t.start()
print('主线程/主进程')
'''
打印结果:
主线程/主进程
hello
'''
# 内存数据的共享问题
from threading import Thread
from multiprocessing import Process
import os
def work():
global n
n = 0
if __name__ == '__main__':
# n=100
# p=Process(target=work)
# p.start()
# p.join()
# print('主',n) 毫无疑问子进程p已经将自己的全局的n改成了0,
# --但改的仅仅是它自己的,查看父进程的n仍然为100
n = 1
t = Thread(target=work)
t.start()
t.join()
print('主', n) # 查看结果为0,因为同一进程内的线程之间共享进程内的数据
# 同一进程内的线程共享该进程的数据?
'''
Python多线程情况下:
- 计算密集型操作:效率低。(GIL锁限制的,一个进程中只要一个线程被调用)
- IO操作: 效率高
Python多进程的情况下:
- 计算密集型操作:效率高(浪费资源)。 不得已而为之。
- IO操作: 效率高 (浪费资源)。
以后写Python时:(c python)
IO密集型用多线程: 文件/输入输出/socket网络通信
计算密集型用多进程。
(pypy解决了这个问题)
扩展:
Java多线程情况下:
- 计算密集型操作:效率高。
- IO操作: 效率高
java多进程的情况下:(很少写)
- 计算密集型操作:效率高(浪费资源)。
- IO操作: 效率高 浪费资源)。
'''
多线程实现socket
# server端
# _*_coding:utf-8_*_
# !/usr/bin/env python
import multiprocessing
import threading
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('127.0.0.1', 8080))
s.listen(5)
def action(conn):
while True:
data = conn.recv(1024)
print(data)
conn.send(data.upper())
if __name__ == '__main__':
while True:
conn, addr = s.accept()
p = threading.Thread(target=action, args=(conn,))
p.start()
# client
# _*_coding:utf-8_*_
# !/usr/bin/env python
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('127.0.0.1', 8080))
while True:
msg = input('>>: ').strip()
if not msg: continue
s.send(msg.encode('utf-8'))
data = s.recv(1024)
print(data)
多线程的应用场景
计算密集型多线程–多线程无用
import threading
v1 = [11, 22, 33] # +1
v2 = [44, 55, 66] # +100
def func(data, plus):
for i in range(len(data)):
data[i] = data[i] + plus
t1 = threading.Thread(target=func, args=(v1, 1))
t1.start()
t2 = threading.Thread(target=func, args=(v2, 100))
t2.start()
IO操作–多线程有用
例子:如上面的 爬虫示例
Thread类的其他方法
方法概述
'''
Thread实例对象的方法
# isAlive(): 返回线程是否活动的。
# getName(): 返回线程名。
# setName(): 设置线程名。
threading模块提供的一些方法:
# threading.currentThread(): 返回当前的线程变量。
# threading.enumerate(): 返回一个包含正在运行的线程的list。
# --正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
# threading.activeCount(): 返回正在运行的线程数量,
# --与len(threading.enumerate())有相同的结果。
'''
# 代码示例
from threading import Thread
import threading
from multiprocessing import Process
import os
def work():
import time
time.sleep(3)
print(threading.current_thread().getName()) # 获取名字
if __name__ == '__main__':
# 在主进程下开启线程
t = Thread(target=work)
t.start()
print(threading.current_thread().getName())
print(threading.current_thread()) # 主线程
print(threading.enumerate()) # 连同主线程在内有两个运行的线程
print(threading.active_count())
print('主线程/主进程')
'''
打印结果:
MainThread
<_MainThread(MainThread, started 140735268892672)>
[<_MainThread(MainThread, started 140735268892672)>,
<Thread(Thread-1, started 123145307557888)>]
主线程/主进程
Thread-1
'''
threading.local()
引入前先了解一下局部变量和全局变量
# 局部变量
import threading
import time
def worker():
x = 0
for i in range(100):
time.sleep(0.0001)
x += 1
print(threading.current_thread(),x)
for i in range(10):
threading.Thread(target=worker).start()
运行结果:
<Thread(Thread-2, started 123145372971008)> 100
<Thread(Thread-6, started 123145393991680)> 100
<Thread(Thread-1, starte