题目描述
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。
思路及Python实现
思路一:递归实现
- 二叉搜索树,变成双向链表看下图流程:发现如果我们使用中序遍历的话,只需要让“每一个左右子树” 链接 “每一个根结点”(开始是 根结点:左子树和右子树看做一个整体 和根结点链接起来;接着 左子树看成一个整体,也可以找出一个根结点,然后又有自己的左右子树;右子树 看成一个整体…依次类推)即可;显然有递归非常好实现,那么接下来的难题变成了,如何找到没一次的“根结点”(每一部分的尾结点)新建两枚指针完成!
所以整体思路是:
1.将左子树构造成双链表,并返回链表头结点。
2.定位至左子树双链表尾结点。
3.如果左子树链表不为空的话,将当前root追加到左子树链表,即建立左子树和根结点的关系。
4.将右子树构造成双链表,并返回链表头结点。
5.如果右子树链表不为空的话,将该链表追加到root结点之后,即建立右子树和根结点的关系。
6.根据左子树链表是否为空确定返回的结点。
左右子树整体化一 递归做法
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def Convert(self, pRootOfTree):
if pRootOfTree is None:
return None
if pRootOfTree.left is None and pRootOfTree.right is None:
# 这里只排除了左右子树都是空的情况,但是还要单独验证左右子树有一个为空
return pRootOfTree
left = self.Convert(pRootOfTree.left) # 这里的left是左子树构成的双向链表的的表头
pre = left
# 因为left是头结点,因此需要定位到左子树的最后一个结点,和根结点建立左右结点关系
while left and pre.right: # pre.right是下一个结点
pre = pre.right
if left: # 如果根结点的左子树存在的话,与根结点建立关系
pre.right = pRootOfTree
pRootOfTree.left = pre # 因为是双向链表,因此既要有左结点,又有右结点
# 这里的right是右子树构成的双向链表的的表头,和左子树一样
right = self.Convert(pRootOfTree.right)
if right:
pRootOfTree.right = right
right.left = pRootOfTree
# 如果左子树存在,就返回left,否则不管右子树存不存在,根结点都是双向链表的头结点
return left if left else pRootOfTree
详细分类完成 做法
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def Convert(self, pRootOfTree):
if pRootOfTree is None:
return None
def find_right(node):
while node.right:
node = node.right
return node
left_node = self.Convert(pRootOfTree.left)
right_node = self.Convert(pRootOfTree.right)
ret_node = left_node
if left_node:
left_node = find_right(left_node)
else:
ret_node = pRootOfTree
pRootOfTree.left = left_node
pRootOfTree.right = right_node
if left_node:
left_node.right = pRootOfTree
if right_node:
right_node.left = pRootOfTree
return ret_node
思路二:非递归实现
- 由于二叉搜索树的中序遍历序列就是排序之后的序列,直接用中序遍历即可,然后修改当前遍历节点与前一遍历节点的指针指向
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def Convert(self, pRootOfTree):
if pRootOfTree is None:
return None
if pRootOfTree.left is None and pRootOfTree.right is None:
return pRootOfTree
stack = []
res = []
temp_node = pRootOfTree
while stack or temp_node:
while temp_node:
stack.append(temp_node)
temp_node = temp_node.left
node = stack.pop()
res.append(node)
temp_node = node.right
for i in range(len(res) - 1):
res[i].right = res[i + 1]
res[i + 1].left = res[i]
return res[0]