实战 | 基于YOLOv8和OpenCV实现车速检测(详细步骤 + 代码)

本文通过详细步骤和代码教你如何利用YOLOv8进行对象检测,配合BYTETrack进行物体跟踪,结合OpenCV进行视角转换,最终计算车辆速度。涉及对象检测模型的选用、跟踪算法以及速度估算的数学原理和实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导  读

    本文主要介绍如何使用YOLOv8+BYTETrack+OpenCV实现车辆速度的计算(详细步骤 + 代码)。 

前 言

图片

    您是否想过如何使用计算机视觉来估计车辆的速度?在本教程中,我们将探索从对象检测到跟踪再到速度估计的整个过程。 

    本文的实现主要包含以下三个主要步骤,分别是对象检测、对象跟踪和速度估计,下面我们将一一介绍其实现步骤。

      

车辆检测

    要对视频执行对象检测,我们需要迭代视频的帧,然后对每个帧运行我们的检测模型。推理则提供对预先训练的对象检测模型的访问,我们使用yolov8x-640模型。相关代码和文档可参考链接:

https://github.com/roboflow/inference?ref=blog.roboflow.comhttps://inference.roboflow.com/?ref=blog.roboflow.com​​​​​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Color Space

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值