项目需要做趋势预测,采用线性拟合、2阶曲线拟合和指数拟合的算法,各种线性拟合算法写成矩阵大概是这么个形式:
其中x是横坐标采样值,y是纵坐标采样值,i是采样点序列号,a是系数,N是采样点个数,n是阶数,所以线性拟合最后就转成了一个解高阶方程组的问题。
不知道有没有什么好用的java矩阵运算的包,我很不擅长搜集这种资料,所以只好捡起了已经放下多年的线性代数,自己写了个java程序用增广矩阵的算法来解高阶方程组。直接贴代码好了:
package commonAlgorithm;
public class PolynomialSoluter {
private double[][] matrix;
private double[] result;
private int order;
public PolynomialSoluter() {
}
// 检查输入项长度并生成增广矩阵
private boolean init(double[][] matrixA, double[] arrayB) {
order = arrayB.length;
if (matrixA.length != order)
return false;
matrix = new double[order][order + 1];
for (int i = 0; i < order; i++) {
if (matrixA[i].length != order)
return false;
for (int j = 0; j < order; j++) {