大数据面试之spark

spark基础知识-涉及多个方面

一、Scala的一些知识

1、Scala和Java的区别
对比的内容Scalajava
变量声明只需要声明是val或是var,具体的类型由编译器自行推断需要在变量前面先注明变量的类型
返回值申明返回值是在后面,并不需要return语句,也可以用如果有返回值,需要return语句
结束符不需要使用分号作为结束符每个语句结束需要作为结束符
循环循环语句可以用于守卫不能
通配符_*
构造器构造器名称为this,Scala的辅助构造器之前需要有一个主构造器或者其他辅助构造器,并且Scala的构造器可以放在类的后面构造器名称需要与类名称一样
内部类scala实例化的内部类是不同的,可以使用类型投影内部类从属于外部类
接口Scala中接口称为特质(trait),特质中是可以写抽象方法,也可以写具体的方法体状态,且类可以实现多个特质的。特质可以继承普通的类接口中的方法只能是抽象方法,不可以写具体的方法体的方法,接口不能继承普通的类
赋值Scala中的赋值语句返回结果是unit的不可以串联,例如x=y=1,这样是有问题的,x并没有被赋值为1x=y=1,这样是没问题的
Scala语言的特点?什么是函数式编程?
  • Scala语言集成面向对象和函数式编程。
  • 函数式编程是一种典范,将电脑的运算视为是函数式的运算。
  • 与过程化编程相比,函数式编程里的函数计算可以随时调用。
  • 函数式编程中函数是一等功名。
Scala中的闭包
  • 你可以在任何作用域定义函数:包,类甚至是另一个函数或方法,在函数体内,可以访问到相应作用域内的任何变量。(重点)函数可以不再处于作用域内时被调用
def main(args: Array[String]): Unit = {
    def sss():Int={
      def s1():Int={
        println("s1这个方法")
        1
      }
      println("sss这个方法")
      s1()
      2
    }
    sss()
  }
#控制台结果
sss这个方法
s1这个方法
Scala中的柯里化
  • 定义:将原来接受两个参数的函数变成新的接受一个参数的函数的过程。新的函数返回一个以原有的第二个参数作为参数的函数。
Scala中的模式匹配
    var sign = 77
    var ch: Char = '+'
    ch match {
      case '+' => sign = 1
      case '-' => sign = -1
      case _ => sign = 0
    }
    print(sign)
trait(特质) 和abstract class(抽象类)的区别
  • 一个类只能集成一个抽象类,但可以通过width关键字继承多个特质
  • 抽象类有参数的构造函数,特质不行(trait t(i:Int){},错误写法)
2、scala的一些函数
  • 匿名函数
 (a:Int)=>{}

      def fun1=(a:Int) => {
      }
      def funq(s:String*): Unit ={
        s.foreach(print(_))
      }
  • 偏应用函数(方法中某一函数参数特别多,又需要频繁调用,又只想改变一部分参数的值可用这种函数)
def showlog(logdate:Date,log:String): Unit ={
        println(s"logtime is $logdate,content is $log")
      }
    val date =new Date()
    showlog(date,"a")
    showlog(date,"b")
    showlog(date,"c")
def fun = showlog(date,_:String)
    fun("ss")
//输出
logtime is Fri Nov 06 12:37:41 CST 2020,content is a
logtime is Fri Nov 06 12:37:41 CST 2020,content is b
logtime is Fri Nov 06 12:37:41 CST 2020,content is c
logtime is Fri Nov 06 12:37:41 CST 2020,content is ss
  • 高阶函数
  1. 方法的参数是函数
    def sum(a:Int,b:Int): Int ={
      a+b
    }
    def sum1(f:(Int,Int)=>Int,s:String): String ={
      val i:Int=f(100,200)
      i+"&&&"+s
    }
    val result=sum1((a:Int,b:Int)=>{a+b},"scala")
    //这两个结果是一样的
    val result1=sum1(sum,"scala")
  1. 方法的返回值是函数(要显式的写出方法的返回值类型)
                        //此处是返回值类型,只有该sum函数的返回值符合该类型,调用该函数才会显示
    def sum3(a:Int,b:Int):(String,String)=>String={
		//函数值可以嵌套函数,该函数类型符合sum3函数返回类型
      def fun3(c:String,d:String):String={
        c+"#"+d+""+c+"***"+a
      }
	  //此处是一个返回值
      fun3
    }
    print(sum3(1,2)("c1","d1"))
  • 柯里化函数
    def keli(a:Int,b:Int)(c:Int,d:Int)={
      a+b+c+d
    }
    print(keli(1,2)(3,4))

二、spark2.1.1

  • 是什么
  1. Apache Spark™是一个用于大规模数据处理的统一分析引擎
  2. Spark围绕着弹性分布式数据集(RDD)的概念,RDD是可并行操作的元素的容错集合;
  3. RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合,每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。RDD 可以包含 Python、Java、Scala 中任意类型的对象, 甚至可以包含用户自定义的对象.
  4. RDD的操作算子包括两类,一类叫做transformations,它是用来将RDD进行转化,构建RDD的血缘关系;另一类叫做actions,它是用来触发RDD的计算,得到RDD的相关计算结果或者将RDD保存的文件系统中.
  5. 在Spark中创建RDD的创建方式大概可以分为三种:(1)、从集合中创建RDD;(2)、从外部存储创建RDD;(3)、从其他RDD创建。

1.RDD的五大特性

  1. A list of partitions

RDD由很多partition构成,在spark中,计算式,有多少partition就对应有多少个task来执行,对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

  1. A function for computing each split
    对RDD做计算,相当于对RDD的每个split或partition做计算。2)Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

  2. A list of dependencies on other RDDs
    RDD之间有依赖关系,可溯源。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

4.Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
如果RDD里面存的数据是key-value形式,则可以传递一个自定义的Partitioner进行重新分区,比如可以按key的hash值分区。一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

  1. Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)
    最优的位置去计算,也就是数据的本地性
    计算每个split时,在split所在机器的本地上运行task是最好的,避免了数据的移动;split有多个副本,所以preferred location不止一个
    数据在哪里,应优先把作业调度到数据所在机器上,减少数据的IO和网络传输,这样才能更好地减少作业运行时间(木桶原理:作业运行时间取决于运行最慢的task所需的时间),提高性能。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

2.RDD两种创建方式

  1. 并行化 驱动程序中的现有集合
val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)
  1. 或引用外部存储系统(例如共享文件系统,HDFS,HBase或提供Hadoop InputFormat的任何数据源)中的数据集。
val distFile = sc.textFile("data.txt")

点击查看spark RDD官方手册

Spark支持Java、Python和Scala的API。大致把Spark的用例分为两类:数据科学应用和数据处理应用,是一种快速、通用、可扩展的大数据分析引擎,基于内存计算的大数据并行计算框架,Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理、迭代算法、交互式查询、流处理。


3.RDD弹性

  1. 自动进行内存和磁盘数据存储的切换
    Spark优先把数据放到内存中,如果内存放不下,就会放到磁盘里面,程序进行自动的存储切换
  2. 基于血统的高效容错机制
    在RDD进行转换和动作的时候,会形成RDD的Lineage依赖链,当某一个RDD失效的时候,可以通过重新计算上游的RDD来重新生成丢失的RDD数据。
  3. Task如果失败会自动进行特定次数的重试
    RDD的计算任务如果运行失败,会自动进行任务的重新计算,默认次数是4次。
  4. Stage如果失败会自动进行特定次数的重试
    如果Job的某个Stage阶段计算失败,框架也会自动进行任务的重新计算,默认次数也是4次。
  5. Checkpoint和Persist可主动或被动触发
    RDD可以通过Persist持久化将RDD缓存到内存或者磁盘,当再次用到该RDD时直接读取就行。也可以将RDD进行检查点,检查点会将数据存储在HDFS中,该RDD的所有父RDD依赖都会被移除。
  6. 数据调度弹性
    Spark把这个JOB执行模型抽象为通用的有向无环图DAG,可以将多Stage的任务串联或并行执行,调度引擎自动处理Stage的失败以及Task的失败。
  7. 数据分片的高度弹性
    可以根据业务的特征,动态调整数据分片的个数,提升整体的应用执行效率。

4.RDD 持久化

  1. RDD的缓存
    Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存个数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用
  2. RDD缓存方式
    RDD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空 间中。
    但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。在存储级别的末尾加上“_2”来把持久化数据存为两份。
    通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
  3. RDD检查点机制
    Spark中对于数据的保存除了持久化操作之外,还提供了一种检查点的机制,检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能。
    cache 和 checkpoint 是有显著区别的, 缓存把 RDD 计算出来然后放在内存中,但是RDD 的依赖链(相当于数据库中的redo 日志), 也不能丢掉, 当某个点某个 executor 宕了,上面cache 的RDD就会丢掉, 需要通过 依赖链重放计算出来, 不同的是, checkpoint 是把 RDD 保存在 HDFS中, 是多副本可靠存储,所以依赖链就可以丢掉了,就斩断了依赖链, 是通过复制实现的高容错。
    val conf = new SparkConf()
      .setAppName("demo1")
      .setMaster("local[2]")
    val sc = new SparkContext(conf)
#设置HDFS上检查点存储的路径
    sc.setCheckpointDir("C:\\Users\\Administrator\\Desktop\\mapdata\\")

RDD的依赖关系
  • RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。
  • 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用.窄依赖我们形象的比喻为独生子女
  • 宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition,会引起shuffle.宽依赖我们形象的比喻为超生

5.DAG的生成

DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。


6.调优

申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。
比如的RDD有100个分区,那么计算的时候就会生成100个task,你的资源配置为10个计算节点,每个2个核,同一时刻可以并行的task数目为20,计算这个RDD就需要5个轮次。
如果计算资源不变,你有101个task的话,就需要6个轮次,在最后一轮中,只有一个task在执行,其余核都在空转。
如果资源不变,你的RDD只有2个分区,那么同一时刻只有2个task运行,其余18个核空转,造成资源浪费。这就是在spark调优中,增大RDD分区数目,增大任务并行度的做法。
在sparkUI上查看调取任务的所用时间与计算所用时间,如果计算任务用时小于调取任务用时则说明分区数太多


7.键值对RDD的数据分区

  • Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了:RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数。
    (1)只有Key-Value类型的RDD才有分区的,非Key-Value类型的RDD分区的值是None
scala> val pp=sc.parallelize(List(1,1))
pp: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24
scala> pp.partitioner
res1: Option[org.apache.spark.Partitioner] = None

(2)每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的。

  1. 可以通过使用RDD的partitioner 属性来获取 RDD 的分区方式。它会返回一个 scala.Option 对象, 通过get方法获取其中的值。
  2. Hash分区方式
    HashPartitioner分区的原理:对于给定的key,计算其hashCode,并除于分区的个数取余,如果余数小于0,则用余数+分区的个数,最后返回的值就是这个key所属的分区ID。
  3. Range分区方式
    HashPartitioner分区弊端:可能导致每个分区中数据量的不均匀,极端情况下会导致某些分区拥有RDD的全部数据。
    RangePartitioner分区优势:尽量保证每个分区中数据量的均匀,而且分区与分区之间是有序的,一个分区中的元素肯定都是比另一个分区内的元素小或者大;
    但是分区内的元素是不能保证顺序的。简单的说就是将一定范围内的数映射到某一个分区内。
    RangePartitioner作用:将一定范围内的数映射到某一个分区内,在实现中,分界的算法尤为重要。用到了水塘抽样算法。
  4. 自定义分区方式
    要实现自定义的分区器,你需要继承 org.apache.spark.Partitioner 类并实现下面三个方法。
    numPartitions: Int:返回创建出来的分区数。

getPartition(key: Any): Int:返回给定键的分区编号(0到numPartitions-1)。
equals():Java 判断相等性的标准方法。这个方法的实现非常重要,Spark 需要用这个方法来检查你的分区器对象是否和其他分区器实例相同,这样 Spark 才可以判断两个 RDD 的分区方式是否相同。

package com.wq1.spark
import org.apache.spark.{Partitioner, SparkConf, SparkContext}
class CustomerPartitioner(numParts:Int) extends Partitioner {
  //覆盖分区数
  override def numPartitions: Int = numParts
  //覆盖分区号获取函数
  override def getPartition(key: Any): Int = {
    val ckey: String = key.toString
    ckey.substring(ckey.length-1).toInt%numParts
  }
}
object CustomerPartitioner {
  def main(args: Array[String]) {
    val conf=new SparkConf().setAppName("partitioner")
    val sc=new SparkContext(conf)
    val data=sc.parallelize(List("aa.2","bb.2","cc.3","dd.3","ee.5"))
    data.map((_,1)).partitionBy(new CustomerPartitioner(5)).keys.saveAsTextFile("hdfs://hadoop01:9000/partitioner")
  }
}

三、Standalone模式配置

  • slaves
# A Spark Worker will be started on each of the machines listed below.
wq1
wq2
wq3
  • spark-site.conf
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Default system properties included when running spark-submit.
# This is useful for setting default environmental settings.
# Example:
# spark.master                     spark://master:7077
# spark.eventLog.enabled           true
# spark.eventLog.dir               hdfs://namenode:8021/directory
# spark.serializer                 org.apache.spark.serializer.KryoSerializer
# spark.driver.memory              5g
# spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
# sparkMaster的配置
spark.master                     spark://wq1:7077
# # 开启Spark任务历史记录
spark.eventLog.enabled           true
# # 设置任务历史记录的存储目录
spark.eventLog.dir               hdfs://wq1:9000/sparklogs
  • spark-env.sh
#!/usr/bin/env bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.
# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos
# Options read in YARN client/cluster mode
# - SPARK_CONF_DIR, Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - YARN_CONF_DIR, to point Spark towards YARN configuration files when you use YARN
# - SPARK_EXECUTOR_CORES, Number of cores for the executors (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G)
# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_HOST, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_DAEMON_CLASSPATH, to set the classpath for all daemons
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
# Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR      Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR       Where log files are stored.  (Default: ${SPARK_HOME}/logs)
# - SPARK_PID_DIR       Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING  A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS      The scheduling priority for daemons. (Default: 0)
# - SPARK_NO_DAEMONIZE  Run the proposed command in the foreground. It will not output a PID file.
# Options for native BLAS, like Intel MKL, OpenBLAS, and so on.
# You might get better performance to enable these options if using native BLAS (see SPARK-21305).
# - MKL_NUM_THREADS=1        Disable multi-threading of Intel MKL
# - OPENBLAS_NUM_THREADS=1   Disable multi-threading of OpenBLAS
# 配置Hadoop集群的配置文件目录
HADOOP_CONF_DIR=/opt/hadoop-2.7.7/etc/hadoop
# 配置SparkStandalone集群的Master节点主机名
SPARK_MASTER_HOST=wq3
# 配置SparkStandalone集群的Master节点服务端口
SPARK_MASTER_PORT=7077

1.Job history 配置

  • vim spark-env.sh
#调整WEBUI访问的端口号为4000
#指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=4000
-Dspark.history.retainedApplications=3
-Dspark.history.fs.logDirectory=hdfs://wq1:9000/sparklog"

2.Spark应用提交

  • 执行第一个spark程序
    这是/opt/spark-2.4.7/examples/jars/spark-examples_2.11-2.4.7.jar安装spark时就有的示例架包
    该算法是利用蒙特·卡罗算法求PI
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://wq1:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/spark-2.4.7/examples/jars/spark-examples_2.11-2.4.7.jar

3.spark应用执行过程

  • 运行前的内存情况
[root@wq1 bin]# free -h
              total        used        free      shared  buff/cache   available
Mem:           1.4G        1.1G        131M        1.6M        197M        178M
Swap:          2.0G        1.5G        531M
  • spark context
20/11/15 11:27:38 INFO spark.SparkContext: Running Spark version 2.4.7
20/11/15 11:27:38 INFO spark.SparkContext: Submitted application: Spark Pi
20/11/15 11:27:38 INFO spark.SecurityManager: Changing view acls to: root
20/11/15 11:27:38 INFO spark.SecurityManager: Changing modify acls to: root
20/11/15 11:27:38 INFO spark.SecurityManager: Changing view acls groups to: 
20/11/15 11:27:38 INFO spark.SecurityManager: Changing modify acls groups to: 
20/11/15 11:27:38 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(root); groups with view permissions: Set(); users  with modify permissions: Set(root); groups with modify permissions: Set()
20/11/15 11:27:39 INFO util.Utils: Successfully started service 'sparkDriver' on port 33990.
  • Spark Env
20/11/15 11:27:39 INFO spark.SparkEnv: Registering MapOutputTracker
20/11/15 11:27:39 INFO spark.SparkEnv: Registering BlockManagerMaster
20/11/15 11:27:39 INFO storage.BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
20/11/15 11:27:39 INFO storage.BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
20/11/15 11:27:39 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-079ea711-ad6d-4f17-83c1-109db4c44642
20/11/15 11:27:39 INFO memory.MemoryStore: MemoryStore started with capacity 413.9 MB
20/11/15 11:27:39 INFO spark.SparkEnv: Registering OutputCommitCoordinator
20/11/15 11:27:40 INFO util.log: Logging initialized @7087ms
20/11/15 11:27:41 INFO server.Server: jetty-9.3.z-SNAPSHOT, build timestamp: unknown, git hash: unknown
20/11/15 11:27:41 INFO server.Server: Started @8796ms
20/11/15 11:27:42 INFO server.AbstractConnector: Started ServerConnector@cdfa952{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
20/11/15 11:27:42 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
  • Add jar
20/11/15 11:27:44 INFO spark.SparkContext: Added JAR file:/opt/spark-2.4.7/examples/jars/spark-examples_2.11-2.4.7.jar at spark://wq1:33990/jars/spark-examples_2.11-2.4.7.jar with timestamp 1605410864239
20/11/15 11:27:44 INFO client.StandaloneAppClient$ClientEndpoint: Connecting to master spark://wq1:7077...
20/11/15 11:27:46 INFO client.TransportClientFactory: Successfully created connection to wq1/192.168.236.236:7077 after 2363 ms (0 ms spent in bootstraps)
20/11/15 11:27:50 INFO cluster.StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20201115112750-0000
20/11/15 11:27:50 INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 45469.
  • DAGScheduler
20/11/15 11:29:04 INFO scheduler.DAGScheduler: Shuffle files lost for worker worker-20201114204626-192.168.236.236-45453 on host 192.168.236.236
20/11/15 11:29:16 INFO spark.SparkContext: Starting job: reduce at SparkPi.scala:38
20/11/15 11:29:16 INFO scheduler.DAGScheduler: Got job 0 (reduce at SparkPi.scala:38) with 2 output partitions
20/11/15 11:29:16 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (reduce at SparkPi.scala:38)
20/11/15 11:29:16 INFO scheduler.DAGScheduler: Parents of final stage: List()
20/11/15 11:29:17 INFO scheduler.DAGScheduler: Missing parents: List()
20/11/15 11:29:17 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34), which has no missing parents
20/11/15 11:29:27 INFO memory.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 2.0 KB, free 413.9 MB)
20/11/15 11:29:27 INFO memory.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1381.0 B, free 413.9 MB)
20/11/15 11:29:27 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on wq1:45469 (size: 1381.0 B, free: 413.9 MB)
20/11/15 11:29:27 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1184
20/11/15 11:29:28 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34) (first 15 tasks are for partitions Vector(0, 1))
20/11/15 11:29:28 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
20/11/15 11:29:32 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20201115112750-0000/2 on worker-20201114204626-192.168.236.236-45453 (192.168.236.236:45453) with 1 core(s)
20/11/15 11:29:32 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20201115112750-0000/2 on hostPort 192.168.236.236:45453 with 1 core(s), 1024.0 MB RAM
20/11/15 11:29:34 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20201115112750-0000/2 is now RUNNING
20/11/15 11:29:44 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
20/11/15 11:29:58 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
20/11/15 11:30:13 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
20/11/15 11:30:28 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
20/11/15 11:30:42 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (192.168.236.236:35316) with ID 2
20/11/15 11:30:43 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.236.236, executor 2, partition 0, PROCESS_LOCAL, 7870 bytes)
20/11/15 11:30:43 WARN scheduler.TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
20/11/15 11:30:57 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.236.236:40409 with 413.9 MB RAM, BlockManagerId(2, 192.168.236.236, 40409, None)
20/11/15 11:31:17 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.236.236:40409 (size: 1381.0 B, free: 413.9 MB)
20/11/15 11:31:21 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 192.168.236.236, executor 2, partition 1, PROCESS_LOCAL, 7870 bytes)
20/11/15 11:31:22 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 628 ms on 192.168.236.236 (executor 2) (1/2)
20/11/15 11:31:22 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 39599 ms on 192.168.236.236 (executor 2) (2/2)
20/11/15 11:31:23 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
20/11/15 11:31:23 INFO scheduler.DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:38) finished in 120.427 s
20/11/15 11:31:23 INFO scheduler.DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 126.891304 s
Pi is roughly 3.144115720578603
  • Stop
20/11/15 11:31:24 INFO server.AbstractConnector: Stopped Spark@cdfa952{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
20/11/15 11:31:24 INFO ui.SparkUI: Stopped Spark web UI at http://wq1:4040
20/11/15 11:31:24 INFO cluster.StandaloneSchedulerBackend: Shutting down all executors
20/11/15 11:31:24 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor to shut down
20/11/15 11:31:25 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
20/11/15 11:31:26 INFO memory.MemoryStore: MemoryStore cleared
20/11/15 11:31:26 INFO storage.BlockManager: BlockManager stopped
20/11/15 11:31:26 INFO storage.BlockManagerMaster: BlockManagerMaster stopped
20/11/15 11:31:26 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
20/11/15 11:31:27 INFO spark.SparkContext: Successfully stopped SparkContext
20/11/15 11:31:27 INFO util.ShutdownHookManager: Shutdown hook called
20/11/15 11:31:27 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-cf55fd85-0595-4bb5-bec8-0a17aa11b740
20/11/15 11:31:27 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-095181a6-933e-4eca-9ad2-93e8e288abdf
  1. spark有哪些组件?

    (1)master:管理集群和节点,不参与计算。
    (2)worker:计算节点,进程本⾝不参与计算,和master汇报。
    (3)Driver:运⾏程序的main⽅法,创建spark context对象。
    (4)spark context:控制整个application的⽣命周期,包括dagsheduler和task scheduler等组件。
    (5)client:⽤户提交程序的入口。
    (6)DAG Scheduler:根据job构建基于stage的DAG,并提交stage给taskscheduler.
    (7)TaskScheduler:将任务task分发给Excutor
    (8)SparkEnv:线程级别的上下文,存储运行时的重要组件的引用
  2. saprk工作机制
    1、⽤户在client端提交作业后,会由Driver运⾏main⽅法并创建spark context上下⽂。
    2、执⾏add算⼦,形成dag图输⼊dagscheduler,按照add之间的依赖关系划分stage输⼊task scheduler。 task scheduler会将stage
    划分为task set分发到各个节点的executor中执⾏。
  3. spark核⼼编程原理?
    (1)定义初始的RDD,即第⼀个RDD是从哪⾥来,读取数据,包括hdfs、linux本地⽂件、程序中的集合;
    (2)定义对RDD的计算操作,这在spark中称为算⼦,转换操作和⾏动操作,包括map、reduce、flatmap、reducebykey等,⽐mapreduce提供的map和reduce强⼤的太多;
  4. 算子介绍
    spark实现单词计数的代码
    简写版
 val conf = new SparkConf().setMaster("local[2]").setAppName("demo")
    val sc = new SparkContext(conf)
    val rdd1: RDD[String] = sc.textFile("C:\\Users\\Administrator\\Desktop\\mapdata\\words.txt")
rdd1.flatMap(_.split("")).map((_,1)).reduceByKey((_+_)).foreach(println)
  • 细化版
object WCSpark {
  def main(args: Array[String]): Unit = {
    //创建配置对象
    val conf = new SparkConf()
    //设置App的名称   有啥用? 方便在监控页面找到  MR-》Yarn 8088
    conf.setAppName("WCSpark")
    //设置Spark的运行模式  local本地运行  用于测试环境
    conf.setMaster("local")
 
    //创建Spark上下文 他是通往集群的唯一通道
    val sc = new SparkContext(conf)
 
    /**
      * 处理数据   在SparkCore中一切得计算都是基于RDD
      * R(Resilient)D(Distributed )D(Dataset)
      * RDD 弹性分布式数据集
      */
    val lineRDD = sc.textFile("d:/test.txt")
    //基于lineRDD中的数据 进行分词
    val wordRDD = lineRDD.flatMap { _.split(" ") }
    //每一个单词计数为1  pairRDD  K:word V:1
    val pairRDD = wordRDD.map { (_,1) }
    //相同的单词进行分组,对组内的数据进行累加
    //restRDD K:word V:count
    val restRDD = pairRDD.reduceByKey((v1,v2)=>v1+v2)
    /**
      * 根据单词出现的次数来排序
      * sortByKey 根据key来排序
      * sortBy
      */
    //    restRDD
    //      .map(_.swap)
    //      .sortByKey(false)
    //      .map(_.swap)
    //      .foreach(println)
 
    //释放资源
    sc.stop()
	  //最全的写法
	   rdd1.flatMap(line=>{
      line.split("")
    })
    val value = words.map(word => {
      new Tuple2(word, 1)
    })
    val value1 = value.reduceByKey((v1, v2) => {
      v1 + v2
    })
    value1.foreach(one=>{
      print(one)
    })
  }
}

根据网站日志分析出近几天有多少IP访问本网站

提取总IP数流程

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("demo1")
      .setMaster("local[2]")
    val sc = new SparkContext(conf)
    sc.setCheckpointDir("C:\\Users\\Administrator\\Desktop\\mapdata\\")
    val rdd: RDD[String] = sc.textFile("C:\\Users\\Administrator\\Desktop\\mapdata\\access1.log")
    val rdd1: RDD[(String, String, Int, String)] = rdd.map(line => {
      val strs = line.split("\\s+")
      val ip = strs(0)
      val str = DateUtils.dateFormat(strs(3).tail)
      var rCode = 0
      try {
        rCode = strs(8).toInt
      } catch {
        case e: Exception =>
      }
      val osType = ""
      (ip, str, rCode, osType)
    })
    rdd1.map((x=>{
      new Tuple2(x._1,1)
    })).distinct().map(x=>{
      new Tuple2(1,1)
    }).reduceByKey(_+_).foreach(println)
  }

提取网站访问日志中的访问IP,访问日期,访问响应码为404的
统计访问IP中数字1到9出现的次数

 def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("demo1")
      .setMaster("local[2]")
    val sc = new SparkContext(conf)
    val rdd: RDD[String] = sc.textFile("C:\\Users\\Administrator\\Desktop\\mapdata\\access.log")
    val rdd1: RDD[(String, String, Int, String)] = rdd.map(line => {
      val strs = line.split("\\s+")
      val ip = strs(0)
      val str = DateUtils.dateFormat(strs(3).tail)
      var rCode = 0
      try {
        rCode = strs(8).toInt
      } catch {
        case e: Exception =>
      }
      val osType = ""
      (ip, str, rCode, osType)
    }).filter(trufalse=>{
      trufalse._3==404
    })

    //2.filter
    //2.1.声明def filter(f: T => Boolean): RDD[T]
    //2.2.参数 一元函数,参数是原rdd的中的元素,返回值是Boolean
    //2.3.返回值  和原RDD泛型一致的RDD
    //2.4.作用  过滤元素 (f返回True的元素将被留下)

//3.flatMap
    //1.声明def flatMap(f: T => TraversableOnce[U]): RDD[U]
    //2.参数 一个一元函数,参数是原RDD的元素类型,返回值是一个集合
    //3.返回值 是一个f的返回值泛型的RDD
    //4.作用 将二维集合变成一维集合

    //统计所有ip中0-9的数字的出现次数

    val rdd2: RDD[String] = rdd1.flatMap(x => {
      val res1: String = x._1
      val res2: String = res1.replace(".", "")
      val res3: Array[String] = res2.split("")
      res3
    })

    val rdd3: RDD[String] = rdd1.flatMap(_._1.replace(".", "").split(""))

    rdd3.map((_, 1))
      .reduceByKey(_ + _)
    .foreach(println)
  
  }
展示每天访问的IP数

首先这组数据结构如下,难点:每天的日期还得去除时分秒后作为一个key值,IP作为一个KEY值

(113.200.107.37,2020-11-27 14:39:26,200,)
(83.97.20.196,2020-11-27 14:39:28,0,)
(159.89.15.153,2020-11-27 14:39:35,400,)

combineByKey(createCombiner, mergeValue, mergeCombiners, partitioner)

def combineByKey[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null): RDD[(K, C)] = self.withScope {}

combineByKey的作用是:Combine values with the same key using a different result type.

createCombiner函数是通过value构造并返回一个新的类型为C的值,这个类型也是combineByKey函数返回值中value的类型(key的类型不变)。

mergeValue函数是把具有相同的key的value合并到C中。这时候C相当于一个累计器。(同一个partition内)

mergeCombiners函数把两个C合并成一个C。(partitions之间)

scala>  val textRDD = sc.parallelize(List(("A", "aa"), ("B","bb"),("C","cc"),("C","cc"), ("D","dd"), ("D","dd")))
textRDD: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[0] at parallelize at <console>:24

scala>     val combinedRDD = textRDD.combineByKey(
     |       value => (1, value),
     |       (c:(Int, String), value) => (c._1+1, c._2),
     |       (c1:(Int, String), c2:(Int, String)) => (c1._1+c2._1, c1._2)
     |     )
combinedRDD: org.apache.spark.rdd.RDD[(String, (Int, String))] = ShuffledRDD[1] at combineByKey at <console>:26

scala> 

scala>     combinedRDD.collect.foreach(x=>{
     |       println(x._1+","+x._2._1+","+x._2._2)
     |     })

D,2,dd
A,1,aa
B,1,bb
C,2,cc

aggregate
aggregate用户聚合RDD中的元素,先使用seqOp将RDD中每个分区中的T类型元素聚合成U类型,再使用combOp将之前每个分区聚合后的U类型聚合成U类型,特别注意seqOp和combOp都会使用zeroValue的值,zeroValue的类型为U。这个方法的参数和combineByKey函数差不多。我们需要注意的是,aggregate函数是先计算每个partition中的数据,在计算partition之间的数据。

/**
   * Aggregate the elements of each partition, and then the results for all the partitions, using
   * given combine functions and a neutral "zero value". This function can return a different result
   * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U
   * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are
   * allowed to modify and return their first argument instead of creating a new U to avoid memory
   * allocation.
   *
   * @param zeroValue the initial value for the accumulated result of each partition for the
   *                  `seqOp` operator, and also the initial value for the combine results from
   *                  different partitions for the `combOp` operator - this will typically be the
   *                  neutral element (e.g. `Nil` for list concatenation or `0` for summation)
   * @param seqOp an operator used to accumulate results within a partition
   * @param combOp an associative operator used to combine results from different partitions
   */
  def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
    // Clone the zero value since we will also be serializing it as part of tasks
    var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
    val cleanSeqOp = sc.clean(seqOp)
    val cleanCombOp = sc.clean(combOp)
    val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
    val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
    sc.runJob(this, aggregatePartition, mergeResult)
    jobResult
  }
scala> val textRDD = sc.parallelize(List("A", "B", "C", "D", "D", "E"))
textRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[3] at parallelize at <console>:24

scala> val resultRDD = textRDD.aggregate((0, ""))((acc, value)=>{(acc._1+1, acc._2+":"+value)}, (acc1, acc2)=> {(acc1._1+acc2._1, acc1._2+":"+acc2._2)})
resultRDD: (Int, String) = (6,::D:E::D::A::B:C)
spark各种运行模式
  • local:调试用
  • standalone:分布式部署集群,资源管理和任务监管都是spark自己监控
  • spark on yarn:分布式部署集群,资源和任务监控交给yarn管理
  • spark顶层调度层使用RDD的依赖为每个job创建一个由stages组成的DAG(有向无环图)

spark与Mapreduce的比较

  • 线程和进程的区别
区别进程线程
根本区别作为资源分配的单位调度和执行的单位
开销每个进程之都有独立的代码和数据空间,进程间切换会有较大的开销线程可以看做轻量级的进程,同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器,线程切换开销小
所处环境在操作系统中能同时运行多个任务(程序)在同一应用程序中有多个顺序流同时执行
分配内存同一进程的线程共享本进程的地址空间和资源而进程之间的地址空间和资源是相互独立的
影响关系一个进程崩溃后,在保护模式下不会对其他进程产生影响但是一个线程崩溃整个进程都死掉。所以多进程要比多线程健壮
  1. MapReduce多进程模型
  • 每个Task运行在一个独立的JVM进程中;
  • 可单独为不同类型的Task设置不同的资源量,目前支持内存和CPU两种资源;
  • 每个Task运行完后,将释放所占用的资源,这些资源不能被其他Task复用,即使是同一个作业相同类型的Task。也就是说,每个Task都要经历“申请资源—> 运行Task –> 释放资源”的过程。
  1. Spark多线程模型
  • 每个节点上可以运行一个或多个Executor服务;
  • 每个Executor配有一定数量的slot,表示该Executor中可以同时运行多少个ShuffleMapTask或者ReduceTask;
  • 每个Executor单独运行在一个JVM进程中,每个Task则是运行在Executor中的一个线程;
  • 同一个Executor内部的Task可共享内存,比如通过函数SparkContext#broadcast广播的文件或者数据结构只会在每个Executor中加载一次,而不会像MapReduce那样,每个Task加载一次;
  • Executor一旦启动后,将一直运行,且它的资源可以一直被Task复用,直到Spark程序运行完成后才释放退出。

Mapreduce shuffle和Spark shuffle的区别
  • Mrshuffle:MapTask 到reduceTask之间的过程
  • Sparkshuffle:job到stage之间的过程
Spark shuffle调优
  1. 程序调优
⾸先,尽量减少shuffle次数;
//两次shuffle
rdd.map().repartition(1000).reduceByKey(_+_,3000)
//⼀次shuffle
Rdd.map().repartition(3000).reduceByKey(_+_)
然后必要时主动shuffle,通常⽤于改变并⾏度,提⾼后续分布式运⾏速度;
rdd.repartition(largerNumPartition).map()
最后,使⽤treeReduce&treeAggregate替换reduce&aggregate。数据量较⼤时,reduce&aggregate⼀次性聚
合,shuffle量太⼤,⽽treeReduce&treeAggregate是分批聚合,更为保险
  1. 参数调优
  • 减少⽹络传输的次数
spark.reducer.maxSizeFlight:reduce task去磁盘拉取数据
默认值:48m
参数说明:该参数⽤于设置shuffle read task的buffer缓冲⼤⼩,⽽这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可⽤的内存资源较为充⾜的话,可以增加这个参数的⼤⼩(⽐如96M),从⽽减少拉取数据的次
数,也就可以减少⽹络传输的次数,进⽽提升性能。在实践中发现,合理调节该参数,性能会有15%的提升。
  • 对于传输大数据量调节该参数可以⼤幅度提升稳定性
Spark.shuffle.io.maxRetries
默认值:3
参数说明:shuffle read task从shuffle write task所在节点拉取属于⾃⼰的数据时,如果因为⽹络异常导致拉取失败,
时会⾃动进⾏重试的。该参数就代表了可以重试的最⼤次数,如果在指定次数内拉取属于还是没有成功,就可能
会导致作业执⾏失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最⼤次数(⽐如6),可以避免由于JVM
的full gc或者⽹络不稳定等因素导致的数据拉取失败。在实践中发现,对于超⼤数据量(数⼗亿到上百亿)的shuffle
过程,调节该参数可以⼤幅度提升稳定性。
  • 增加shuffle操作的稳定性。
Spark.shuffle.io.retryWait
默认值:5s
参数说明:shuffle read task从shuffle write task所在节点拉取属于⾃⼰的数据时,如果拉取失败了每次重试拉取数据
的等待时间间隔,默认是5s;
调优建议:建议加⼤时间间隔时长,⽐如60s,以增加shuffle操作的稳定性。
  • 避免由于内存不⾜导致聚合过程中频繁读写磁盘
spark.shuffle.memoryFraction
默认值:0.2
参数说明:该参数代表了executor内存中,分配给shuffle read task进⾏聚合操作的内存⽐例,默认是20%;
调优建议:如果内存充⾜,⽽且很少使⽤持久化操作,建议调⾼和这个⽐例,给shuffle read的聚合操作更多内
存,以避免由于内存不⾜导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%
  • 提供较好的磁盘读写性能。
Spark.shuffle.manager
默认值:sort
参数说明:该参数⽤于设置shuffleManager的类型。Spark1.5以后有三个可选项:hash、sort和tungstensort。Tungsten-sort与sort类似,但是使⽤了tungsten计划中的堆外内存管理机制,内存使⽤效率提⾼。
调优建议:由于sort shuffleManager默认会对数据进⾏排序,因此如果你的业务逻辑中需要该排序机制的话,则使
⽤默认的sort ShuffleManager就可以;但是如果你的业务逻辑不需要对数据进⾏排序,那么建议参考后⾯的⼏个参
数调优,通过bypass机制或优化的hash ShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这⾥要
注意的是,tungsten-sort要慎⽤,因为之前发现了⼀些相应的bug。
Spark.shuffle.sort.bypassMergeThreshold
  • 减少了排序的性能开销
默认值:200
参数说明:当shuffleManager为sortshuffleManager时,如果shuffle read task的数量⼩于这个阈值,则shuffle write过程
中不会进⾏排序操作,⽽是直接按照未经优化的hashShuffleManager的⽅式去写数据,但是最后会将每个task产⽣的
所有临时磁盘⽂件都合并成⼀个⽂件,并会创建单独的索引⽂件。
调优建议:当你使⽤sortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调⼤⼀些,⼤于shuffle
read task的数量,那么此时就会⾃动启⽤bupass机制,map-side就不会进⾏排序,减少了排序的性能开销。但是这
种⽅式下,依然会产⽣⼤量的磁盘⽂件,因此shuffle write性能有待提⾼。
  • 极⼤地减少磁盘IO开销
Spark.shuffle.consolidateFiles
默认值:false
参数说明:如果使⽤hashShuffleManager,该参数有效。如果设置为true,那么就会开启consilidate机制,会⼤幅度
合并shuflle write的输出⽂件,对于shuffle read task数量特别多的情况下,这种⽅法可以极⼤地减少磁盘IO开销,提
升性能。
调优建议:如果的确不需要sortHashShuffle的排序机制,那么除了使⽤bypass机制,还可以尝试
将spark.shuffle.manager参数⼿动调节为hash,使⽤hashShuffleManager,同时开启consolidate机制。在实践中尝试
过,发现其性能⽐开启了bypass机制的sortshuffleManager要⾼出10%30%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值