自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(226)
  • 资源 (14)
  • 收藏
  • 关注

原创 离线数据仓库

数据中台:利用大数据技术,对海量数据统一进行采集、计算和存储、并统一数据标准和口径,该架构需要维护两套代码:离线架构代码和实时架构代码。随取随用、只有在使用时才进行数据转换等处理。数据中台:包含数据仓库和其他服务中间件。对原始数据进行清洗、转换和预处理。作为数据仓库或数据集市的数据源,更适合进行数据挖掘、探索和预测。可视化报表服务,支持历史分析。源系统导入数据、无数据流失。商业智能系统、数据仪表盘等。与定义好的数据模型相吻合。对外提供数据服务的API。

2023-07-14 11:21:32 4212

原创 left join 和except方法区别和联系

left join 和except方法区别和联系

2023-07-13 20:05:11 1857

原创 大数据计算分析技术:批处理、流计算、OLAP引擎

大数据计算:指的是 面向业务需求 对海量数据的并行处理、分析和挖掘大数据计算的手段:通过对海量数据分片、多个计算节点并行执行、实现高性能、高可靠的数据处理

2023-07-13 19:55:27 812

原创 实时数据处理

离线数据中,两表关联是非常简单的,因为离线关联的时候,表里的数据已经是全量的静态数据;而流式计算不一样,数据的到达是一个增量源源不断的过程,且两个流到达的顺序也是无序的。实时任务(多线程操作,并发任务,延时在ms级)中,需要 计算很多指标和维度,数据需要存放在存储系统中,方便恢复或关联;eg:去重指标的明细数据,用于发生故障时,使用数据库中的数据恢复内存现场。ETL处理后的实时结果,实时更新,写的频率高,可以被下游直接使用。非去重指标分桶:数据随机分发到每个桶,再汇总,利用的是各个桶的CPU能力。

2023-07-10 11:06:15 433

原创 WHERE条件和ON条件的区别

WHERE条件和ON条件的区别

2023-07-10 11:02:37 143

转载 支付业务测试

伴随着互联网金融的兴起以及移动支付的普及,市场在演变、支付领域也在改革,而各大结构对统一支付平台的构建也迫在眉睫。一体化的支付平台设计即整合线上和线下支付业务、统一收银、统一路由、统一日终,对接行内核心系统以及行外大小额系统、超级网银、银联、第三方支付等资金通道,是一整套资金流转体系。下面描述几个生活中常用到的涉及到支付业务流程的功能:跨行转账、订单支付、二维码支付。支付系统涉及到的业务主要包括:智能路由、聚合收单、日终清算、日终对账、差错冲正。

2023-03-20 15:25:30 790 1

原创 购物车、支付功能、12306测试

购物车、支付功能、12306测试

2023-03-13 11:28:13 242

原创 系统性能测试指标

系统性能测试指标

2023-02-28 17:38:51 2105

原创 git: Updates were rejected because the tip of your current branch is behind

1.使用强制push的方法,这样会使远程修改丢失,一般是不可取的,尤其是多人协作开发的时候。2.push前先将远程repository修改pull下来。

2023-02-28 17:09:40 86

原创 为什么测试环境测试通过,线上还会有bug?

硬件方面的,一般正式环境的服务器都比测试环境来的好,所以硬件上不太可能一致,虽然这个差异影响比较小,但也不排除会影响程序的运行。eg:测试环境资源有限,运行慢,程序A执行完,正好程序B可以run;正式环境,资源相对好,运行很快,程序A处理2的时候,程序B才处理完1,导致运行有问题;一般新版本的迭代不仅仅是代码层面的,还有数据库的改动,而对于线上的数据来说,数据库结构改动,会导致线上数据在新版本的代码不兼容;软件方面的,包括程序语言的版本,服务器系统的版本,甚至服务器的权限控制都会影响到程序的运行。

2023-02-28 16:37:01 1134

原创 python 随机生成字母+数字验证码

【代码】python 随机生成字母+数字验证码。

2023-02-27 21:19:26 1495

原创 面试sql

where Sname='李军') and Sname not in ('李军')select * from Student where Class=95031 or Ssex='女'where Ssex='男' group by Class having COUNT(*)>1。where Tsex='男' and Teacher.Tno=Course.Tno。where Sname='李军')where Sname='李军')where Ssex='男')--现查询所有同学的Sno、Cno和rank列。

2023-02-19 18:29:13 426

原创 python 实现dict key和value反转

【代码】python 实现dict key和value反转。

2023-02-19 16:28:00 610

原创 Unix和Linux之间的区别?什么是bash?常用的linux命令

2. Bash 是 Unix 系统和 Linux 系统的一种 Shell(命令行环境)程序;shell是bash的一个进程。1. Unix和Linux之间的区别。3. linux的常用命令。

2023-02-19 14:57:51 1276

原创 count(1)、count(*)、count(column)、count(distinct column) 区别

count(1)、count(*)、count(column)、count(distinct column) 区别

2023-02-19 14:41:17 103

原创 java实现map的key和value list反转

【代码】java实现map的key和value list反转。

2023-02-02 15:42:33 1353

原创 数据分析:SQL和Python

with as 也叫做子查询部分,类似于一个视图或临时表,可以用来存储一部分的sql语句查询结果,必须和其他的查询语句一起使用,且中间不能有分号,目前在oracle、sql server、hive等均支持 with as 用法,但 mysql并不支持!

2023-01-29 19:28:39 9341 11

原创 java的stream

java的stream将流转化成一个值,通常用于:求和、求乘积、求最大值。2. 初始化对象,并进行计算。1. 先定义一个对象。

2023-01-28 16:14:25 1149

原创 hbase 的逻辑存储结构、物理存储结构和增删改查

hbase采用列存储,本质上是key-value存储系统,其中row key相当于key,列簇的集合相当于valuerow key用来检索记录的主键,它必须存在一张表中且唯一hbase一张表由一个或多个region组成:下图的一张表由三个region组成,按照row key的字典序排列在不同的region里列族:下表被划分为两个列族class_info(name,age,class列)和 contact_info(mobile,adress列)

2023-01-08 15:50:53 441

原创 SQL计算均值、中位数和众数

SQL计算均值、中位数和众数

2022-12-31 22:55:19 837

原创 Hive基本操作-增删改查和修改库表

Hive基本操作-增删改查和修改库表

2022-12-31 22:07:54 1800

原创 信贷--------

3、策略为主、模型为辅:样本量丰富;策略的精髓在于分群:年龄分群、收入分群、多头分群、模型分群、风险分群,决策体系中有很多重要的分群,代表决策分支。通过风险识别、计量、检测和控制等程序,对风险进行评级、分类、报告和管理的过程,减少金融机构的信贷风险。2、模型为主、策略为辅:样本数较多、特征分类:逾期模型、多头模型、交易模型等保持AUC和KS高位。1、规则为主、模型为辅:样本少(黑白名单、年龄地域、公安司法信息),简单通用、基于经验。信贷:一切以实现承诺为条件的价值运动方式,如贷款、担保、承诺、赊欠等。

2022-12-30 18:50:33 403

原创 小企业信贷风控

小企业信贷风控

2022-12-30 15:36:20 826

原创 结束tomcat进程

结束tomcat进程

2022-12-19 22:32:30 459

原创 性能测试流程

性能测试流程

2022-12-19 22:00:23 181

转载 接口测试requests库,cookie、token认证

接口测试requests库,cookie、token认证

2022-12-18 17:20:55 1675

原创 接口测试session和token区别

接口测试session和token区别

2022-12-18 16:19:00 188

原创 弱网测试怎么做

弱网测试

2022-12-17 21:16:57 1917

原创 RabbitMQ 和 RocketMQ,如何测试?

RabbitMQ 和 RocketMQ,如何测试?

2022-12-17 20:32:21 540

原创 java String 和 数组、列表

java 格式化字符串 、字符串切分、列表和数组

2022-07-16 18:06:09 1111

原创 reading 摘录二

你只是看起来很努力

2022-07-16 17:15:34 232

原创 git命令

13、当前分支拉copy开发分支gitcheckout-bdev。14、把新建的分支push到远端gitpushorigindev。4、cd到刚拉取到的项目文件夹列出分支。8、项目文件夹添加当前仓库修改的所有文件。11、项目文件夹pull时提示有偏离分支。6、项目文件夹从远程拉取代码并合并到本地。10、项目文件夹在push之前先拉一下。12、项目文件夹最后push文件到远程。5、项目文件夹切换到DEV分支。1、cd到代码要存储的路径。9、项目文件夹提交文件到仓库。...

2022-07-16 15:21:30 416

原创 reading 摘录一

卡耐基写给女人的一生幸福忠告

2022-07-16 14:47:46 326

原创 JAVA 前端上传文件,后端解析文件流并写入数据库

JAVA 前端上传文件,后端解析文件流并写入数据库

2022-07-16 12:17:22 4095

原创 MAC IDEA Failed to write core dump. Core dumps have been disabled

MAC IDEA Failed to write core dump. Core dumps have been disabled

2022-06-08 17:04:12 1019

原创 Tkinter实现

# !/usr/bin/python# -*-coding:utf-8 -*-import tkinter as tkimport tkinter.messageboxfrom pathlib import Pathfrom tkinter import filedialogimport threadingfrom tkinter.filedialog import askdirectoryfile_path = ''res_path = ''def comm(): glo.

2021-11-28 10:15:57 357

原创 SQL执行顺序

1、FROM阶段求笛卡尔积(cross join):左n行,右表m行:n*m行 on关联条件 外连接(left/right/full outer):借助where条件 用is null/null筛选2、WHERE阶段主表条件写在where里,外连接表的条件可写在On里 对于内连接,写在where和on 里是一样的3、GROUP BY阶段sel 的字段必须是group by的字段组里,如不在组里,必须用聚合函数处理4、HAVING阶段having筛选器是唯一能筛选分...

2021-10-29 19:14:52 201

原创 Python实现单链表的节点类,增删改查操作

1、创建单链表节点的类: 包含两个成员变量:next 指针 和 value值2、定义单链表的类 包含一个成员变量:单链表的头指针,初始化为None3、定义单链表的操作:(1)单链表初始化(2)是否非空(3)求链表长度(4)链表元素查询(5)链表插入元素X:头、尾和指定位置(6)链表删除元素X#定义单链表的节点class linknode: def __init__(self,val): '''实例化单链表的类时:定义两个...

2021-08-24 22:05:28 1694

原创 python列表转字典

1、直接转:要求列表中的每个元素是 长度为2的元组 或 长度为2的列表 l1 = [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')] print(dict(l1)) # {1: 'a', 2: 'b', 3: 'c', 4: 'd'} l2= [['key1', 'value1'], ['key2', 'value2'], ['key3', 'value3']] print(dict(l2)) .

2021-08-22 19:12:59 12597 2

原创 赋值、浅拷贝(对象拷贝,但不会拷贝子对象)、深拷贝(对象拷贝)

1、赋值相当于对象多了一个引用,引用计数器的值为2,A和B指向同一个对象A=[1,2,3,['qq']]B=AB.append(4)print(A)#[1, 2, 3, ['qq'], 4]2、浅拷贝拷贝父对象,不会拷贝子对象A=[1,2,3,['qq']]C= A.copy()A.append(4)A[3].append('ww')print(C)#[1, 2, 3, ['qq', 'ww']]3、深拷贝既拷贝对象、也拷贝子对象,相当于是另开辟了一个空

2020-12-26 19:10:04 305

4区SCI期刊目录影响因子查询

4区SCI期刊目录影响因子查询

2018-10-28

内存泄漏和防范

动态分配、回收内存是 C /C + +编程语言一个最强的特点 ,但是最强的同时也可能是最弱的 ,在内存处理出错的地方通常就是 BUGS 产生的地方。一个最敏感和难检测的 BUGS 就是内存泄漏 — 没有把前边分配的内存成功释放 ,一个小的内存泄漏可能不会引起人的注意 ,但是程序泄漏大块内存 ,将可能引起复杂的内存耗尽错误。

2018-10-13

labelImg软件给数据加标签的软件

加标签(label)的软件,window环境下,打开就可以加标签,很方便实用

2018-05-31

神经网络和机器学习第三版中文PDF

神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 本书特色: 1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。 2. 核方法,包括支持向量机和表达定理。 3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。 4. 随机动态规划,包括逼近和神经动态规划。 5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。 6. 利用逐次状态估计算法训练递归神经网络。 7. 富有洞察力的面向计算机的试验。 出版者的话 译者序 前言 缩写和符号 术语 第0章 导言1 0.1 什么是神经网络1 0.2 人类大脑4 0.3 神经元模型7 0.4 被看作有向图的神经网络10 0.5 反馈11 0.6 网络结构13 0.7 知识表示14 0.8 学习过程20 0.9 学习任务22 0.10 结束语27 注释和参考文献27 第1章 Rosenblatt感知器28 1.1 引言28 1.2 感知器28 1.3 感知器收敛定理29 1.4 高斯环境下感知器与贝叶斯分类器的关系33 1.5 计算机实验:模式分类36 1.6 批量感知器算法38 1.7 小结和讨论39 注释和参考文献39 习题40 第2章 通过回归建立模型28 2.1 引言41 2.2 线性回归模型:初步考虑41 2.3 参数向量的最大后验估计42 2.4 正则最小二乘估计和MAP估计之间的关系46 2.5 计算机实验:模式分类47 2.6 最小描述长度原则48 2.7 固定样本大小考虑50 2.8 工具变量方法53 2.9 小结和讨论54 注释和参考文献54 习题55 第3章 最小均方算法56 3.1 引言56 3.2 LMS算法的滤波结构56 3.3 无约束最优化:回顾58 3.4 维纳滤波器61 3.5 最小均方算法63 3.6 用马尔可夫模型来描画LMS算法和维纳滤波器的偏差64 3.7 朗之万方程:布朗运动的特点65 3.8 Kushner直接平均法66 3.9 小学习率参数下统计LMS学习理论67 3.10 计算机实验Ⅰ:线性预测68 3.11 计算机实验Ⅱ:模式分类69 3.12 LMS算法的优点和局限71 3.13 学习率退火方案72 3.14 小结和讨论73 注释和参考文献74 习题74 第4章 多层感知器77 4.1 引言77 4.2 一些预备知识78 4.3 批量学习和在线学习79 4.4 反向传播算法81 4.5 异或问题89 4.6 改善反向传播算法性能的试探法90 4.7 计算机实验:模式分类94 4.8 反向传播和微分95 4.9 Hessian矩阵及其在在线学习中的规则96 4.10 学习率的最优退火和自适应控制98 4.11 泛化102 4.12 函数逼近104 4.13 交叉验证107 4.14 复杂度正则化和网络修剪109 4.15 反向传播学习的优点和局限113 4.16 作为最优化问题看待的监督学习117 4.17 卷积网络126 4.18 非线性滤波127 4.19 小规模和大规模学习问题131 4.20 小结和讨论136 注释和参考文献137 习题138 第5章 核方法和径向基函数网络144 5.1 引言144 5.2 模式可分性的Cover定理144 5.3 插值问题148 5.4 径向基函数网络150 5.5 K-均值聚类152 5.6 权向量的递归最小二乘估计153 5.7 RBF网络的混合学习过程156 5.8 计算机实验:模式分类157 5.9 高斯隐藏单元的解释158 5.10 核回归及其与RBF网络的关系160 5.11 小结和讨论162 注释和参考文献164 习题165 第6章 支持向量机168 6.1 引言168 6.2 线性可分模式的最优超平面168 6.3 不可分模式的最优超平面173 6.4 使用核方法的支持向量机176 6.5 支持向量机的设计178 6.6 XOR问题179 6.7 计算机实验:模式分类181 6.8 回归:鲁棒性考虑184 6.9 线性回归问题的最优化解184 6.10 表示定理和相关问题187 6.11 小结和讨论191 注释和参考文献192 习题193 第7章 正则化理论197 7.1 引言197 7.2 良态问题的Hadamard条件198 7.3 Tikhonov正则化理论198 7.4 正则化网络205 7.5 广义径向基函数网络206 7.6 再论正则化最小二乘估计209 7.7 对正则化的附加要点211 7.8 正则化参数估计212 7.9 半监督学习215 7.10 流形正则化:初步的考虑216 7.11 可微流形217 7.12 广义正则化理论220 7.13 光谱图理论221 7.14 广义表示定理222 7.15 拉普拉斯正则化最小二乘算法223 7.16 用半监督学习对模式分类的实验225 7.17 小结和讨论227 注释和参考文献228 习题229 第8章 主分量分析232 8.1 引言232 8.2 自组织原则232 8.3 自组织的特征分析235 8.4 主分量分析:扰动理论235 8.5 基于Hebb的最大特征滤波器241 8.6 基于Hebb的主分量分析247 8.7 计算机实验:图像编码251 8.8 核主分量分析252 8.9 自然图像编码中的基本问题256 8.10 核Hebb算法257 8.11 小结和讨论260 注释和参考文献262 习题264 第9章 自组织映射268 9.1 引言268 9.2 两个基本的特征映射模型269 9.3 自组织映射270 9.4 特征映射的性质275 9.5 计算机实验Ⅰ:利用SOM解网格动力学问题280 9.6 上下文映射281 9.7 分层向量量化283 9.8 核自组织映射285 9.9 计算机实验Ⅱ:利用核SOM解点阵动力学问题290 9.10 核SOM和相对熵之间的关系291 9.11 小结和讨论293 注释和参考文献294 习题295 第10章 信息论学习模型299 10.1 引言299 10.2 熵300 10.3 最大熵原则302 10.4 互信息304 10.5 相对熵306 10.6 系词308 10.7 互信息作为最优化的目标函数310 10.8 最大互信息原则311 10.9 最大互信息和冗余减少314 10.10 空间相干特征316 10.11 空间非相干特征318 10.12 独立分量分析320 10.13 自然图像的稀疏编码以及与ICA编码的比较324 10.14 独立分量分析的自然梯度学习326 10.15 独立分量分析的最大似然估计332 10.16 盲源分离的最大熵学习334 10.17 独立分量分析的负熵最大化337 10.18 相关独立分量分析342 10.19 速率失真理论和信息瓶颈347 10.20 数据的最优流形表达350 10.21 计算机实验:模式分类354 10.22 小结和讨论354 注释和参考文献356 习题361 第11章 植根于统计力学的随机方法366 11.1 引言366 11.2 统计力学367 11.3 马尔可夫链368 11.4 Metropolis算法374 11.5 模拟退火375 11.6 Gibbs抽样377 11.7 Boltzmann机378 11.8 logistic信度网络382 11.9 深度信度网络383 11.10 确定性退火385 11.11 和EM算法的类比389 11.12 小结和讨论390 注释和参考文献390 习题392 第12章 动态规划396 12.1 引言396 12.2 马尔可夫决策过程397 12.3 Bellman最优准则399 12.4 策略迭代401 12.5 值迭代402 12.6 逼近动态规划:直接法406 12.7 时序差分学习406 12.8 Q学习410 12.9 逼近动态规划:非直接法412 12.10 最小二乘策略评估414 12.11 逼近策略迭代417 12.12 小结和讨论419 注释和参考文献421 习题422 第13章 神经动力学425 13.1 引言425 13.2 动态系统426 13.3 平衡状态的稳定性428 13.4 吸引子432 13.5 神经动态模型433 13.6 作为递归网络范例的吸引子操作435 13.7 Hopfield模型435 13.8 Cohen-Grossberg定理443 13.9 盒中脑状态模型445 13.10 奇异吸引子和混沌448 13.11 混沌过程的动态重构452 13.12 小结和讨论455 注释和参考文献457 习题458 第14章 动态系统状态估计的贝叶斯滤波461 14.1 引言461 14.2 状态空间模型462 14.3 卡尔曼滤波器464 14.4 发散现象及平方根滤波469 14.5 扩展的卡尔曼滤波器474 14.6 贝叶斯滤波器477 14.7 数值积分卡尔曼滤波器:基于卡尔曼滤波器480 14.8 粒子滤波器484 14.9 计算机实验:扩展的卡尔曼滤波器和粒子滤波器对比评价490 14.10 大脑功能建模中的 卡尔曼滤波493 14.11 小结和讨论494 注释和参考文献496 习题497 第15章 动态驱动递归网络501 15.1 引言501 15.2 递归网络体系结构502 15.3 通用逼近定理505 15.4 可控性和可观测性507 15.5 递归网络的计算能力510 15.6 学习算法511 15.7 通过时间的反向传播512 15.8 实时递归学习515 15.9 递归网络的消失梯度519 15.10 利用非线性逐次状态估计的递归网络监督学习框架521 15.11 计算机实验:Mackay-Glass吸引子的动态重构526 15.12 自适应考虑527 15.13 实例学习:应用于神经控制的模型参考529 15.14 小结和讨论530 注释和参考文献533 习题534 参考文献538

2018-04-17

神经网络和机器学习Simon Haykin第三版英文PDF

神经网络和机器学习Simon Haykin第三版英文PDF 神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 本书特色: 1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。 2. 核方法,包括支持向量机和表达定理。 3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。 4. 随机动态规划,包括逼近和神经动态规划。 5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。 6. 利用逐次状态估计算法训练递归神经网络。 7. 富有洞察力的面向计算机的试验。 出版者的话 译者序 前言 缩写和符号 术语 第0章 导言1 0.1 什么是神经网络1 0.2 人类大脑4 0.3 神经元模型7 0.4 被看作有向图的神经网络10 0.5 反馈11 0.6 网络结构13 0.7 知识表示14 0.8 学习过程20 0.9 学习任务22 0.10 结束语27 注释和参考文献27 第1章 Rosenblatt感知器28 1.1 引言28 1.2 感知器28 1.3 感知器收敛定理29 1.4 高斯环境下感知器与贝叶斯分类器的关系33 1.5 计算机实验:模式分类36 1.6 批量感知器算法38 1.7 小结和讨论39 注释和参考文献39 习题40 第2章 通过回归建立模型28 2.1 引言41 2.2 线性回归模型:初步考虑41 2.3 参数向量的最大后验估计42 2.4 正则最小二乘估计和MAP估计之间的关系46 2.5 计算机实验:模式分类47 2.6 最小描述长度原则48 2.7 固定样本大小考虑50 2.8 工具变量方法53 2.9 小结和讨论54 注释和参考文献54 习题55 第3章 最小均方算法56 3.1 引言56 3.2 LMS算法的滤波结构56 3.3 无约束最优化:回顾58 3.4 维纳滤波器61 3.5 最小均方算法63 3.6 用马尔可夫模型来描画LMS算法和维纳滤波器的偏差64 3.7 朗之万方程:布朗运动的特点65 3.8 Kushner直接平均法66 3.9 小学习率参数下统计LMS学习理论67 3.10 计算机实验Ⅰ:线性预测68 3.11 计算机实验Ⅱ:模式分类69 3.12 LMS算法的优点和局限71 3.13 学习率退火方案72 3.14 小结和讨论73 注释和参考文献74 习题74 第4章 多层感知器77 4.1 引言77 4.2 一些预备知识78 4.3 批量学习和在线学习79 4.4 反向传播算法81 4.5 异或问题89 4.6 改善反向传播算法性能的试探法90 4.7 计算机实验:模式分类94 4.8 反向传播和微分95 4.9 Hessian矩阵及其在在线学习中的规则96 4.10 学习率的最优退火和自适应控制98 4.11 泛化102 4.12 函数逼近104 4.13 交叉验证107 4.14 复杂度正则化和网络修剪109 4.15 反向传播学习的优点和局限113 4.16 作为最优化问题看待的监督学习117 4.17 卷积网络126 4.18 非线性滤波127 4.19 小规模和大规模学习问题131 4.20 小结和讨论136 注释和参考文献137 习题138 第5章 核方法和径向基函数网络144 5.1 引言144 5.2 模式可分性的Cover定理144 5.3 插值问题148 5.4 径向基函数网络150 5.5 K-均值聚类152 5.6 权向量的递归最小二乘估计153 5.7 RBF网络的混合学习过程156 5.8 计算机实验:模式分类157 5.9 高斯隐藏单元的解释158 5.10 核回归及其与RBF网络的关系160 5.11 小结和讨论162 注释和参考文献164 习题165 第6章 支持向量机168 6.1 引言168 6.2 线性可分模式的最优超平面168 6.3 不可分模式的最优超平面173 6.4 使用核方法的支持向量机176 6.5 支持向量机的设计178 6.6 XOR问题179 6.7 计算机实验:模式分类181 6.8 回归:鲁棒性考虑184 6.9 线性回归问题的最优化解184 6.10 表示定理和相关问题187 6.11 小结和讨论191 注释和参考文献192 习题193 第7章 正则化理论197 7.1 引言197 7.2 良态问题的Hadamard条件198 7.3 Tikhonov正则化理论198 7.4 正则化网络205 7.5 广义径向基函数网络206 7.6 再论正则化最小二乘估计209 7.7 对正则化的附加要点211 7.8 正则化参数估计212 7.9 半监督学习215 7.10 流形正则化:初步的考虑216 7.11 可微流形217 7.12 广义正则化理论220 7.13 光谱图理论221 7.14 广义表示定理222 7.15 拉普拉斯正则化最小二乘算法223 7.16 用半监督学习对模式分类的实验225 7.17 小结和讨论227 注释和参考文献228 习题229 第8章 主分量分析232 8.1 引言232 8.2 自组织原则232 8.3 自组织的特征分析235 8.4 主分量分析:扰动理论235 8.5 基于Hebb的最大特征滤波器241 8.6 基于Hebb的主分量分析247 8.7 计算机实验:图像编码251 8.8 核主分量分析252 8.9 自然图像编码中的基本问题256 8.10 核Hebb算法257 8.11 小结和讨论260 注释和参考文献262 习题264 第9章 自组织映射268 9.1 引言268 9.2 两个基本的特征映射模型269 9.3 自组织映射270 9.4 特征映射的性质275 9.5 计算机实验Ⅰ:利用SOM解网格动力学问题280 9.6 上下文映射281 9.7 分层向量量化283 9.8 核自组织映射285 9.9 计算机实验Ⅱ:利用核SOM解点阵动力学问题290 9.10 核SOM和相对熵之间的关系291 9.11 小结和讨论293 注释和参考文献294 习题295 第10章 信息论学习模型299 10.1 引言299 10.2 熵300 10.3 最大熵原则302 10.4 互信息304 10.5 相对熵306 10.6 系词308 10.7 互信息作为最优化的目标函数310 10.8 最大互信息原则311 10.9 最大互信息和冗余减少314 10.10 空间相干特征316 10.11 空间非相干特征318 10.12 独立分量分析320 10.13 自然图像的稀疏编码以及与ICA编码的比较324 10.14 独立分量分析的自然梯度学习326 10.15 独立分量分析的最大似然估计332 10.16 盲源分离的最大熵学习334 10.17 独立分量分析的负熵最大化337 10.18 相关独立分量分析342 10.19 速率失真理论和信息瓶颈347 10.20 数据的最优流形表达350 10.21 计算机实验:模式分类354 10.22 小结和讨论354 注释和参考文献356 习题361 第11章 植根于统计力学的随机方法366 11.1 引言366 11.2 统计力学367 11.3 马尔可夫链368 11.4 Metropolis算法374 11.5 模拟退火375 11.6 Gibbs抽样377 11.7 Boltzmann机378 11.8 logistic信度网络382 11.9 深度信度网络383 11.10 确定性退火385 11.11 和EM算法的类比389 11.12 小结和讨论390 注释和参考文献390 习题392 第12章 动态规划396 12.1 引言396 12.2 马尔可夫决策过程397 12.3 Bellman最优准则399 12.4 策略迭代401 12.5 值迭代402 12.6 逼近动态规划:直接法406 12.7 时序差分学习406 12.8 Q学习410 12.9 逼近动态规划:非直接法412 12.10 最小二乘策略评估414 12.11 逼近策略迭代417 12.12 小结和讨论419 注释和参考文献421 习题422 第13章 神经动力学425 13.1 引言425 13.2 动态系统426 13.3 平衡状态的稳定性428 13.4 吸引子432 13.5 神经动态模型433 13.6 作为递归网络范例的吸引子操作435 13.7 Hopfield模型435 13.8 Cohen-Grossberg定理443 13.9 盒中脑状态模型445 13.10 奇异吸引子和混沌448 13.11 混沌过程的动态重构452 13.12 小结和讨论455 注释和参考文献457 习题458 第14章 动态系统状态估计的贝叶斯滤波461 14.1 引言461 14.2 状态空间模型462 14.3 卡尔曼滤波器464 14.4 发散现象及平方根滤波469 14.5 扩展的卡尔曼滤波器474 14.6 贝叶斯滤波器477 14.7 数值积分卡尔曼滤波器:基于卡尔曼滤波器480 14.8 粒子滤波器484 14.9 计算机实验:扩展的卡尔曼滤波器和粒子滤波器对比评价490 14.10 大脑功能建模中的 卡尔曼滤波493 14.11 小结和讨论494 注释和参考文献496 习题497 第15章 动态驱动递归网络501 15.1 引言501 15.2 递归网络体系结构502 15.3 通用逼近定理505 15.4 可控性和可观测性507 15.5 递归网络的计算能力510 15.6 学习算法511 15.7 通过时间的反向传播512 15.8 实时递归学习515 15.9 递归网络的消失梯度519 15.10 利用非线性逐次状态估计的递归网络监督学习框架521 15.11 计算机实验:Mackay-Glass吸引子的动态重构526 15.12 自适应考虑527 15.13 实例学习:应用于神经控制的模型参考529 15.14 小结和讨论530 注释和参考文献533 习题534 参考文献538

2018-04-17

PCA绿萝——python实现

东华大学PCA大作业绿萝python实现 第一部分是由第1,2主元形成的二维点分布图(MATLAB);第二部分是由第1,2,4主元形成的三维点分布图(MATLAB)。由于我并没有给定标定色彩信息,因此生成的两幅分布图都是单色的

2018-03-12

核密度估计大作业KDE

东华大学机器学习核密度估计大作业 第一部分是一个三维的彩色KDE估计图(最好用MATLAB画);第二部分是测试图片的运动目标二值图像检测结果(运动员用白色像素,背景用黑色)

2018-03-12

核密度估计大作业KDE代码

东华大学核密度估计KDE代码 第一部分是一个三维的彩色KDE估计图(最好用MATLAB画);第二部分是测试图片的运动目标二值图像检测结果(运动员用白色像素,背景用黑色)

2018-03-12

数学建模——课件

数学建模资源课件第一章啦啦啦啦啦啦啦啦啦啦啦啦顶顶顶顶顶顶顶顶顶顶

2017-12-14

扫地机器人——嵌入式设备

东华大学 嵌入式设备演讲PPT——扫地机器人!课件资源233333

2017-10-26

东华大学PLC课程实际报告

本多槽水处理系统共有四个独立的废水处理水槽,如上图所示,由一个总进水泵灌入需处理的废水,每个处理槽分别有一个进水阀、一个充氧泵和一个排水阀。 控制系统应设计有一个启动/停止按钮(或电源开关)、一个运行/模式开关、一个模式选择开关。 启动/停止按钮按下(或电源开关合上)后,整个系统才能运行;运行/模式开关处于“运行”时,四个处理槽即开始废水处理,此时不得进行模式切换;运行/模式开关处于“模式”时,可以进行两种工作模式的切换; 输入升降装置(A)将一个成品箱通过机械推手(B)送至输入传送带(C),然后在该传送带末端通过挡板(D)累积到2个,通过成品箱整形(E、F)并接码垛装置,码垛堆积成三层完毕后,再通过升降台(G)启动输送电机(H),将码垛好的三层成品箱送上输出传送带(I)。

2017-09-26

东华大学单片机课程设计报告

用步进电机作为X-Y移动平台的执行机构,实现开环位置控制。本题中的步进电机为两相步进电机, 一相激励时步距角为1.8°(即每个脉冲,转动1.8°),由步进电机驱动器接受控制器的脉冲,每一个脉冲走一步,可正反转。步进电机的转动带动丝杆,将旋转运动转换为直线运动,步进电机的每一走步传递到X或Y方向的移动距离为0.02mm.系统中步进电机工作频率为500Hz--4KHz。运动要求是: (1)当按键K1按下时,X方向步进电机正向运转,X正向移动1mm; 当按键K2按下时,X方向步进电机反向运转,X反向移动1mm; 当按键K3按下时,Y方向步进电机正向运转,Y正向移动1mm; 当按键K3按下时,Y方向步进电机反向运转,Y反向移动1mm; (2)按键按住不放,连续运动直到按键释放,停止运转。 (3)控制器实时显示步进电机转过的步数和X或Y向移动的距离。 (4)系统供电电源为36 VDC。

2017-09-26

交通灯控制系统课程设计东华大学

MCS-51单片机课程设计报告 交通灯控制系统 项目所要设计的是交通灯控制系统,十字路口交通灯由红、绿两色LED显示器(两位8段LED显示器)组成,LED显示器显示切换倒计时,以秒为单位,每秒更新一次;为确保安全,绿LED计数到0转红,经5秒延时(显示红色0)后,另一道开始绿色倒计时。 1) 主干道(A道)先通行且通行时间为45s;(加5秒红灯延时,共50秒) 2) 支道(B道)通行时间为25 s;(加秒红灯延时,共30秒) 3) 主道与支道的车辆交错通行; 4) 若遇紧急情况,按开关时,主道与支道都为红灯20 s 5) 根据实时交通堵塞情况人为控制时,按K2时,主道延时30 s通行,按K3时,支道延时30 s通行。 设计以AT89C51为核心的控制电路,并编写相关的系统软件。

2017-09-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除