java一元二次方程标准形式

本文介绍了如何通过一元二次方程的标准形式ax²+bx+c=0(a≠0)计算判别式Δ=b²-4ac,以确定根的存在情况,包括两个不相等实数根、两个相等实数根和没有实数根,并给出了求解两个实数根的公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一元二次方程标准形式: a x 2 + b x + c = 0 , a ≠ 0 ax^2+bx+c=0,a\ne0 ax2+bx+c=0,a=0

  • 首先求判别式: Δ = b 2 − 4 a c \Delta=b^2-4ac Δ=b24ac
  • 根据判别式了解根的存在情况: Δ { > 0 两个不相等实数根 = 0 两个相等实数根 I t 0 没有实数根 \Delta\begin{cases} \gt0 \quad 两个不相等实数根 \\ =0 \quad 两个相等实数根 \\ It0 \quad 没有实数根 \end{cases} Δ >0两个不相等实数根=0两个相等实数根It0没有实数根
  • 目前只考虑 Δ ≥ 0 \Delta\ge0 Δ0的情况
  • 计算两个实数根: { x 1 = − b + b 2 − 4 a c 2 a x 1 = − b − b 2 − 4 a c 2 a \begin{cases} x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a} \\ x_1=\displaystyle\frac{-b-\sqrt{b^2-4ac}}{2a} \end{cases} x1=2ab+b24ac x1=2abb24ac
  • 合成一个公式: x = − b ± b 2 − 4 a c 2 a 或 x = − b ∓ b 2 − 4 a c 2 a x=\displaystyle\frac{-b\pm\sqrt{b^2-4ac}}{2a}或x=\displaystyle\frac{-b\mp\sqrt{b^2-4ac}}{2a} x=2ab±b24ac x=2abb24ac

  • ne: not equal 不等于
  • gt:greater than 大于
  • it:less than 小于
  • ge :greater than or equal to 大于或等于
  • frac :fraction 分式、分数
  • sqrt :square root 平方根
  • pm: plus minus 正负号
  • mp : minus plus 负正号

4 × 5 = 20 4\times5=20 4×5=20
4 ⋅ 5 = 20 4\cdot5=20 45=20
ctrl d 复制整行
ctrl x 删除整行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值