自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(67)
  • 资源 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 python之获取本地ip地址-linux系统

本文介绍了如何使用Python编程从互联网上获取本机的公网IP地址,涉及到网络编程和TCP/IP的知识。摘要由CSDN通过智能技术生成。

2025-04-24 13:33:23 194

原创 python字典,如何把一个新的键值对放到最前面

在上述代码中,首先创建了一个原始字典 original_dict,接着定义了新的键值对 new_key 和 new_value。然后创建了一个仅包含新键值对的新字典 new_dict,最后通过解包操作符将原始字典的内容合并到新字典后面,从而实现将新键值对添加到字典最前面的目的。在 Python 中,字典(dict)在 Python 3.7 及以后的版本中会保持插入顺序。

2025-04-11 09:51:46 237

原创 肘部法则确定聚类数

肘部法则(Elbow Method)是一种常用于确定聚类数的技术。其基本思想是通过计算不同聚类数下的聚类质量(通常使用每个数据点到其聚类中心的距离平方和的总和,即SSE,Sum of Squared Errors),并寻找“肘部”位置来确定最佳的聚类数。:选择一个可能的聚类数范围,例如从1到K。:对于每个聚类数K,使用聚类算法(例如K-means)进行聚类,然后计算每个数据点到其对应聚类中心的距离的平方和(SSE)。通常,随着聚类数的增多,SSE会逐渐减小,因为更多的聚类能更好地拟合数据。

2025-01-06 10:38:09 1169

原创 数据标准化,不同量纲和不同尺度

数据标准化(Data Standardization)是数据预处理中的一种常见技术,目的是将不同量纲、尺度或者范围的数据转化为一个相对一致的尺度,使得它们能够在同一范围内进行比较和处理。标准化的常见方法是将数据转换为均值为 0,标准差为 1 的数据,或者将数据缩放到指定的范围内。不同尺度的问题会影响模型的训练,尤其是在距离计算和梯度下降优化等算法中,数值范围较大的特征可能会对模型的优化过程产生更大的影响。等方法,将数据缩放到相同的范围或标准,使得特征的数值范围在一个相似的尺度下。(cm),体重的单位是。

2024-12-27 15:47:00 2832

原创 如何结合PCA、t-SNE/UMAP与聚类算法进行高维数据分析?

结合PCAt-SNE/UMAP和聚类算法,我们能够有效地处理和分析高维数据,发现数据中的潜在结构和群体。通过PCA去除冗余特征和加速计算,再通过t-SNE或UMAP精细化降维,最终使用聚类算法识别不同的群体,这一流程能够帮助我们更好地理解数据。PCA用于去除冗余特征,降低维度,并保留数据的全局结构。t-SNE或UMAP进一步降维,帮助我们揭示数据的局部结构,便于可视化。聚类能够根据降维后的数据识别潜在的群体或结构,帮助我们发现数据中的隐藏模式。

2024-12-27 10:20:18 1748

原创 EMA指数移动平均

平滑系数的影响

2024-12-25 15:48:52 205

原创 Qwen-Agent,多智能体官方例子

【代码】Qwen-Agent,多智能体官方例子。

2024-12-16 16:49:15 541

原创 python logging日志封装,滚动保存

【代码】python logging日志封装,滚动保存。

2024-11-19 14:10:38 214 1

原创 Flask 中的 `url_for` 使用指南

通过# 输出: http://example.com:8000/hello/Worldurl_for的优势动态生成路径,避免硬编码。支持动态参数和完整 URL。自动适配协议和主机,适合 API 和外部服务。通过url_for,你可以轻松构建灵活的 Flask 应用,让代码更优雅高效!

2024-11-19 09:48:27 818

原创 AssertionError: The length of ratio_list should be the same as the file_list.[PaddleOCR]

将Train部分的ratio_list: [1.0]改成ratio_list: [1.0,1.0,1.0]

2024-11-13 16:25:45 377

原创 使用conda安装screen

【代码】使用conda安装screen。

2024-08-21 14:54:13 480

原创 yolov5 torch转tensorrt详解【推荐】

def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt assert im.device.type != 'cpu', 'export running on CPU but must be

2024-02-05 14:44:41 1361

原创 psql 命令【postgresql,连接数据库,列出数据库,列出表等】

是 PostgreSQL 的命令行工具,用于与 PostgreSQL 数据库进行交互。中,你还可以使用 SQL 语句执行数据库管理和查询操作。为你要连接的数据库名称。系统可能会要求你输入密码。命令,你可以根据需要使用更多的命令和选项。为你的 PostgreSQL 用户名,

2024-01-23 15:24:45 7510

原创 initdb: command not found【PostgreSQL】

如果您遇到 “initdb: command not found” 错误,说明initdb命令未找到,该命令用于初始化新的 PostgreSQL 数据库群集。这通常是因为 PostgreSQL 相关的工具未正确安装或者安装路径不在系统的PATH变量中。

2024-01-18 17:55:35 2939

原创 urllib.request.urlopen打开包含中文的URL

在上述代码中,`urllib.parse.quote`函数用于对URL进行编码,`safe`参数指定了不需要被编码的字符,例如`/:?然后,使用编码后的URL打开连接。在使用`urllib.request.urlopen`打开包含中文的URL时,需要对URL进行编码。可以使用`urllib.parse.quote`函数来对URL进行编码。url_with_chinese = '在这里放入包含中文的URL'确保在使用中文URL时进行适当的编码,以避免潜在的问题。# 打开编码后的URL。# 对URL进行编码。

2024-01-16 12:15:54 541

原创 docker镜像分层

5. **镜像的顶层是容器的文件系统:** 当你运行一个容器时,Docker 会将所有层叠加在一起,形成一个可写的容器文件系统。1. **每个指令产生一个新的层:** 在 Dockerfile 中的每个指令都会创建一个新的层。3. **镜像的每一层都有唯一的 ID:** 这个 ID 是根据该层的内容生成的,如果两个镜像的某一层的 ID 相同,那么它们就共享相同的内容。4. **分层提高重用性:** 当多个镜像共享相同的基础镜像时,它们会共享相同的底层层,这样就节省了存储和传输成本。

2024-01-12 11:53:32 499

原创 dockerfile用ENTRYPOINT好还是用CMD好

你还可以将它们结合使用,`ENTRYPOINT` 定义应用程序的主要入口点,而 `CMD` 提供默认参数。与 `CMD` 不同,`ENTRYPOINT` 的命令不会被轻易替代,而是作为容器的主要执行命令。- 如果你希望容器的主要目的是运行一个特定的应用程序,并且通常不需要更改启动命令,那么使用 `ENTRYPOINT` 可能更合适,因为它提供了更严格的命令执行方式。- 如果你希望容器的启动命令更加灵活,可以在运行容器时轻松更改,那么 `CMD` 可能更适合,因为它允许更容易地替代默认命令。

2023-09-19 10:42:34 527

原创 SimpleITK,三维膨胀与腐蚀,python实现

【代码】SimpleITK,三维膨胀与腐蚀。

2023-08-28 13:38:16 787

原创 怎么将主机的文件传到容器【docker cp】

请注意,在上述命令中,`mycontainer` 是容器的名称或 ID,`/container/path` 是容器中要复制到的目标路径。要将主机的文件传输到容器中,可以使用 `docker cp` 命令。这将把主机上的文件复制到容器的指定路径。

2023-05-30 12:32:35 1743

原创 np.tile例子

1, 2, 3],[4, 5, 6]])print(B)结果:

2023-05-25 10:08:38 707

原创 cv2.UMat

3. 极佳性能:由于`cv2.UMat`采用了UMA技术,可以有效减少CPU和GPU之间的数据传输,提高了矩阵操作的效率,在进行GPU加速计算时可以获得更好的性能表现。4. 高度兼容:`cv2.UMat`可以与其他OpenCV的数据类型(如`cv2.Mat`)进行无缝协作,并且支持许多常见的计算机视觉操作,如转置、缩放、裁剪等。总的来说,`cv2.UMat`提供了一种基于统一内存架构的矩阵操作方式,使得开发人员可以更加方便地在不同的硬件平台上使用OpenCV来进行计算机视觉相关的任务。

2023-04-21 14:41:58 1021

原创 python中argparse定位参数可以用default吗【定位参数不可省略】

因为定位参数是必需的,它们必须始终由用户提供,而不能使用默认值。如果用户指定了该选项,则输出用户提供的文件名。在上面的示例中,我们定义了一个可选参数。模块中,定位参数不能使用。选项,则输出默认文件名。相反,可选参数可以使用。在 Python 的。

2023-04-21 14:40:15 684

原创 4d view软件 .vol .4dv转 dcom文件

4d view软件 .vol .4dv转 dcom文件

2023-02-02 16:03:32 1464 1

原创 linux python安装pycocotools

linux python安装pycocotools

2022-11-01 11:41:48 842

原创 转torchscript报错:Expected a value of type ‘Tensor (inferred)‘ for argument ‘scale‘ but instead found t

Expected a value of type 'Tensor (inferred)' for argument 'scale' but instead found type 'int'.Inferred 'scale' to be of type 'Tensor' because it was not annotated with an explicit type.

2022-10-18 13:40:39 1827

原创 torchserve 错误:RuntimeError: Expected tensor for argument #1 ‘input’ to have the same device as tenso

torchserve 错误:RuntimeError: Expected tensor for argument #1 ‘input’ to have the same device as tenso

2022-10-18 13:03:50 419

原创 torchserve配置文件config.properties

torchserve配置文件config.properties

2022-10-12 09:49:52 788

原创 anaconda 虚拟环境中安装nginx

anaconda 虚拟环境中安装nginx

2022-09-21 16:56:38 1216

原创 nginx的几个配置文件

nginx默认的几个配置文件

2022-09-21 15:45:29 633

原创 如何删除conda虚拟环境

如何删除conda虚拟环境

2022-09-16 09:33:14 32729 1

原创 torch F.unfold()举例

import torchimport torch.nn as nnimport torch.nn.functional as Fif __name__ == '__main__': x = torch.randn(1, 3, 5, 5) print(x) output = F.unfold(x, [3, 3], padding=1) print(output, output.size())tensor([[[[ 0.6355, -1.7449, -0.1417, 2.

2022-06-22 13:44:45 1243

原创 transformer安装

pip install transformers==3.4.0

2021-12-21 10:42:50 5139

原创 专利检索与下载

专利检索:https://www.iprabc.com/专利下载:http://pss-system.cnipa.gov.cn/sipopublicsearch/portal/uiIndex.shtml

2020-10-10 14:48:55 617

原创 人工智能开放平台体验(百度、腾讯、华为、阿里)

百度:https://ai.baidu.com/腾讯:https://open.youtu.qq.com/#/open/homehttps://cloud.tencent.com/act/event/tiiademo,https://cloud.tencent.com/act/event/ocrdemo华为:https://www.huaweicloud.com/ei/ex...

2020-01-09 14:17:09 2198

原创 git http方式下的用户名和密码

git http方式下的用户名和密码用户名:使用邮箱,而不是个人中心的name密码:使用仓库网站密码

2019-09-17 22:14:45 3086

原创 git push 避免重复输入用户名和密码的方法

在终端输入git config --global credential.helper store可以看到~/.gitconfig文件,会多了一项:[credential] helper = store之后git push时输入一次密码,默认就会把用户名和密码记录在主目录下的.git-credentials里,以后就不用再输入了。...

2019-09-17 22:11:38 725

原创 numpy reshape举例

import cv2import numpy as npimage = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]])a=image.reshape((-1, 6))b=image.reshape(-1, 6)c=image.reshape((3, 4))d=image.reshape(3, 4)print('a:',a...

2019-09-05 08:49:00 314

原创 数组与列表相加还是数组,其他运算也一样

举例:import numpy as npa=np.array([2,3,7,0,1,0])b=[1,2,3,4,5,6]c=a+[1,2,3,4,5,6]print(type(a))print(type(b))print(type(c))print(c)print(list(c))输出:<class 'numpy.ndarray'><cla...

2019-09-02 10:27:02 477

原创 torch.size ()

torch.size ():查看当前Tensor的维度,用法也很简单:终端进入Python环境>>>import torch>>>a = torch.Tensor([[1, 2, 3], [4, 5, 6]])>>>a.size()(2, 3)...

2019-08-28 14:55:49 47823 1

原创 torch.sign(input, out=None)

torch.sign(input, out=None)说明:符号函数,返回一个新张量,包含输入input张量每个元素的正负(大于0的元素对应1,小于0的元素对应-1,0还是0)参数:input(Tensor) -- 输入张量out(Tensor,可选) -- 输出张量>>> a = torch.randn(4)>>> atensor([ 0....

2019-08-28 14:30:04 9708

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除