【算法&数据结构体系篇class26】:斐波那契数列 矩阵快速幂技巧 时间复杂度O(logN)

本文介绍了使用矩阵快速幂技巧优化斐波那契数列的计算,详细阐述了矩阵乘法在求解斐波那契数列中的应用,将时间复杂度降至O(logN)。此外,还探讨了类似斐波那契数列结构的递归优化方法,并列举了矩阵乘法在不同问题(如迈台阶问题、铺瓷砖问题、生牛问题)中的应用。最后提出了一种字符串匹配问题,寻找由0和1组成的字符串中,所有0字符左侧都有1紧邻的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、求斐波那契数列矩阵乘法的方法

1)斐波那契数列的线性求解(O(N))的方式非常好理解

2)同时利用线性代数,也可以改写出另一种表示

 | F(N) , F(N-1) | = | F(2), F(1) |  *  某个二阶矩阵的N-2次方

3)求出这个二阶矩阵,进而最快求出这个二阶矩阵的N-2次方

4)斐波那契数列 1 1 2 3 5 8 13.....其为fn = fn-1 + fn-2   最底层n-2 是二阶矩阵 n-2次方

    其二阶矩阵为   1   1    也就是[ [1,1] [1,0]  ]二维数组

                             1   0

 

二、类似斐波那契数列的递归优化

如果某个递归,除了初始项之外,具有如下的形式

F(N) = C1 * F(N) + C2 * F(N-1) + … + Ck * F(N-k) ( C1…Ck k都是常数)

并且这个递归的表达式是严格的、不随条件转移的

那么都存在类似斐波那契数列的优化,时间复杂度都能优化成O(logN)

 

先判断公式最底层阶数 i   fn =  fn-1...+ fn-i  依赖最低层的就是阶数 i阶
* 得到公式 :
* |fn,fn-1,fn-2..fn-i+1| (共i项)  =  |fi,fi-1,fi-2...1| (共i项) * 矩阵i*i 的 n-i次方

三、斐波那契数列矩阵乘法方式的实现

1.斐波那契数列   1,1,2,3,5,8,13....

f(n) = f(n-1) + f(n-2)    

2.迈台阶问题     1,2,3,5,8,13,21....

f(n) = f(n-1) + f(n-2) 

3.铺瓷砖问题     1,2,3,5,8,13,21....

f(n) = f(n-1) + f(n-2) 

4.生牛问题         1,2,3,4,6,9,13,19...

f(n) = f(n-1) + f(n-3) 
package class26;

/**
 * 斐波那契数列矩阵乘法方式的实现
 */
public class FibonacciProblem {

    /**
     * 斐波那契数列
     * @param n
     * @return
     */
    public static int f1(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return 1;
        }
        return f1(n - 1) + f1(n - 2);
    }

    public static int f2(int n) {
        if (n < 1) {
            return 0;
        }
        if (n == 1 || n == 2) {
            return 1;
        }
        int res = 1;
        int pre = 1;
        int tmp = 0;
        for (int i = 3; i <= n; i++) {
            tmp = res;
            res = res + pre;
            pre = tmp;
        }
        return res;
    }


    /**
     * 总结一个 递推公式
     * 斐波那契数列 : f(n) = f(n-1) + f(n-2)  最底层n-2 2阶  转换成矩阵乘法 降低时间复杂度
     * |f(n),f(n-1)| = |f(2),f(1)| * 矩阵[[1,1],[1,0]]的n-2次方
     *
     * 其他同类型的固化公式: fn = 6*f(n-1) + 3* f(n-5) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值