#LC4 :寻找两个有序数组的中位数

0.废话

这个题要求时间复杂度,这二分我也没啥思路,第一次做就合并有序数组然后找中位数,暴力破解,然后leetcode也让我过了??

1.题目描述

传送门
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。

请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

2.题目思路

看了官方题解
先考虑满足条件的情况,再二分找i的位置
先随机分配i,j将AB两个自己划分为left和right
要满足中位数需要两个条件:

  • 左右子集元素相等
  • 左边最大<=右边最小

最后整理就是在[0,la]中二分查找i,j=(m+n+1)/2-i,使得A[i-1]<=B[j]&&B[j-1]<=A[i]

然后就是边界条件的考虑

  • i == 0 || j == 0 || i == la || j == lb(由于ij之间的关系,只需要判断i即可),二分查找i结束,可以准备返回了中位数了;
  • 1.判断A[i-1]<=B[j](在i-1存在,即i>low,否则不用判断),如果不满足说明i太大了,去左半侧继续寻找,修改high=i-1,继续循环二分找i;
    2.B[j-1]<=A[i](i存在,即i<high,否则这个条件不用判断),如果不满足则说明i太小了,去右半侧继续寻找,修改low=i+1,继续循环二分。

至于返回中位数
还是得按照i边界条件划分

3.代码
class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int la = nums1.size();
        int lb = nums2.size();
        vector<int> t;
        if (lb < la)
        {
            t = nums1;
            nums1 = nums2;
            nums2 = t;
            la = nums1.size();
            lb = nums2.size();
        }
        int i, j; int leftMax, rightMin;
        int low = 0;
        int high = la;
        int temp = (la + lb + 1) / 2;
        while (low <= high)
        {
            i = (low + high) / 2;
            j =  temp - i;
            if (i > low&& nums1[i - 1] > nums2[j])//i太
                high = i - 1;
            else if (i<high && nums2[j - 1]>nums1[i])
                low = i + 1;
            else
            {
                if (i == 0)
                    leftMax = nums2[j - 1];
                else if (j == 0)
                    leftMax = nums1[i - 1];
                else
                    leftMax = nums1[i - 1] > nums2[j - 1] ? nums1[i - 1] : nums2[j - 1];

                if ((la + lb) % 2 == 1)
                    return leftMax;

                if (i == la)
                    rightMin = nums2[j];
                else if (j == lb)
                    rightMin = nums1[i];
                else
                    rightMin = nums1[i] < nums2[j] ? nums1[i] : nums2[j];
                return (leftMax + rightMin) / 2.0;
            }
        }
        return 0;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值