0.废话
这个题要求时间复杂度,这二分我也没啥思路,第一次做就合并有序数组然后找中位数,暴力破解,然后leetcode也让我过了??
1.题目描述
传送门
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
2.题目思路
看了官方题解
先考虑满足条件的情况,再二分找i的位置
先随机分配i,j将AB两个自己划分为left和right
要满足中位数需要两个条件:
- 左右子集元素相等
- 左边最大<=右边最小
最后整理就是在[0,la]中二分查找i,j=(m+n+1)/2-i,使得A[i-1]<=B[j]&&B[j-1]<=A[i]
然后就是边界条件的考虑
- i == 0 || j == 0 || i == la || j == lb(由于ij之间的关系,只需要判断i即可),二分查找i结束,可以准备返回了中位数了;
- 1.判断A[i-1]<=B[j](在i-1存在,即i>low,否则不用判断),如果不满足说明i太大了,去左半侧继续寻找,修改high=i-1,继续循环二分找i;
2.B[j-1]<=A[i](i存在,即i<high,否则这个条件不用判断),如果不满足则说明i太小了,去右半侧继续寻找,修改low=i+1,继续循环二分。
至于返回中位数
还是得按照i边界条件划分
3.代码
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int la = nums1.size();
int lb = nums2.size();
vector<int> t;
if (lb < la)
{
t = nums1;
nums1 = nums2;
nums2 = t;
la = nums1.size();
lb = nums2.size();
}
int i, j; int leftMax, rightMin;
int low = 0;
int high = la;
int temp = (la + lb + 1) / 2;
while (low <= high)
{
i = (low + high) / 2;
j = temp - i;
if (i > low&& nums1[i - 1] > nums2[j])//i太
high = i - 1;
else if (i<high && nums2[j - 1]>nums1[i])
low = i + 1;
else
{
if (i == 0)
leftMax = nums2[j - 1];
else if (j == 0)
leftMax = nums1[i - 1];
else
leftMax = nums1[i - 1] > nums2[j - 1] ? nums1[i - 1] : nums2[j - 1];
if ((la + lb) % 2 == 1)
return leftMax;
if (i == la)
rightMin = nums2[j];
else if (j == lb)
rightMin = nums1[i];
else
rightMin = nums1[i] < nums2[j] ? nums1[i] : nums2[j];
return (leftMax + rightMin) / 2.0;
}
}
return 0;
}
};