104.二叉树的最大深度
最大深度其实就是根节点的高度。前序遍历求得是深度,后序遍历求的是根节点的高度,两种方法都可以得出二叉树的最大深度。
后续遍历(递归):
class Solution {
public:
int getDepth(TreeNode* node){
if(node==nullptr) return 0;
int leftDepth=getDepth(node->left);
int rightDepth=getDepth(node->right);
int depth=1+max(leftDepth,rightDepth);
return depth;
}
int maxDepth(TreeNode* root) {
return getDepth(root);
}
};
前序遍历(回溯):
class Solution {
public:
int res;
void getDepth(TreeNode* node,int depth){
res=max(res,depth);
if(node->left==nullptr&&node->right==nullptr) return;
if(node->left){
depth++;
getDepth(node->left,depth);
depth--;
}
if(node->right){
depth++;
getDepth(node->right,depth);
depth--;
}
return;
}
int maxDepth(TreeNode* root) {
if(root==nullptr) return res;
getDepth(root,1);
return res;
}
};
也可以用层序遍历求最大深度,定义一个变量层数,每遍历一层层数加一即可:
class Solution {
public:
int maxDepth(TreeNode* root) {
queue<TreeNode*> que;
if(root) que.push(root);
int depth=0;
while(!que.empty()){
int size=que.size();
depth++;
for(int i=0;i<size;i++){
TreeNode* node=que.front();
que.pop();
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
}
return depth;
}
};
111.二叉树的最小深度
注意本题目最小深度要求是叶子节点到根节点的距离,如果根节点只有只有左子树或只有右子树,那么缺失的子树不是最小深度,因为没有叶子节点。如图
class Solution {
public:
int getDepth(TreeNode* node){
if(node==nullptr) return 0; //根节点为空深度为0
int leftdepth=getDepth(node->left);
int rightdepth=getDepth(node->right); //分别获取左右子树的深度
if(!node->left&&node->right) return rightdepth+1; //左子树空右子树不空,深度为右子树深度+1(因为从0开始计数
if(node->left&&!node->right) return leftdepth+1; //右子树空右子树不空,深度为左子树深度+1
int result=min(leftdepth,rightdepth)+1; //取左右子树深度小的那一个为最小深度
return result;
}
int minDepth(TreeNode* root) {
return getDepth(root);
}
};
222.完全二叉树的节点个数
222. 完全二叉树的节点个数 - 力扣(LeetCode)
如果忽略二叉树的特殊性质,把他当作普通的树看待,那么在遍历的时候,设置一个计数器,每遍历一个节点,计数器加一即可。
递归法:
class Solution {
private:
int getNodesNum(TreeNode* cur) {
if (cur == NULL) return 0;
int leftNum = getNodesNum(cur->left); // 左
int rightNum = getNodesNum(cur->right); // 右
int treeNum = leftNum + rightNum + 1; // 中
return treeNum;
}
public:
int countNodes(TreeNode* root) {
return getNodesNum(root);
}
};
因为实在首先是一颗完全二叉树,那么如果它的子树的左右外侧深度相等,这棵子树就一定是满二叉树。
根据满二叉树节点数量(2^n-1,n为根节点的高度)的性质,可以直接计算出节点个数。
class Solution {
public:
int countNodes(TreeNode* root) {
if(!root) return 0;
TreeNode* leftnode=root->left;
TreeNode* rightnode=root->right;
int leftdepth=0;
int rightdepth=0;
while(leftnode) {
leftnode=leftnode->left;
leftdepth++;}
while(rightnode) {
rightnode=rightnode->right;
rightdepth++;}
if(leftdepth==rightdepth) return (2<<leftdepth)-1;
return 1+countNodes(root->left)+countNodes(root->right);
}
};