1. 2的幂
- 题目
给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。如果存在一个整数 x 使得
n == 2x
,则认为n
是 2 的幂次方。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/power-of-two
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 题目分析
判断是否为2的次幂,我们有两种思路:一种是对整数
n
取余,结果为1则是2的幂次方;一种是从1开始不断乘2,直到与整数n
相等,这里实现的是第二种思路
- 源码实现
bool isPowerOfTwo(int n){
unsigned int k = 1;
if(n <= 0) //排除小于等于0的情况
{
return false;
}
if(n == 1) //1是任何数的幂次方
{
return true;
}
int i;
for(i = 1; i <= 31; ++i)
{
k *= 2; //循环乘2
if(k == n)
return true;
}
return false;
}
2. 3的幂
- 题目
给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。整数
n
是 3 的幂次方需满足:存在整数 x 使得n == 3x
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/power-of-three
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 题目分析
参照上面的思路,这里使用的是第一种思路求解
- 源码实现
bool isPowerOfThree(int n){
if(n <= 0){
return false;
}
if(n == 1){
return true;
}
int k = n;
int flag = 1;
while(k){
//能是3的幂,那一定能被3整除
if(k % 3 == 0){
k /= 3;
if(k == 1){ //满足条件的最后一定为1
break;
}
}
else{
flag = 0;
break;
}
}
if(flag){
return true;
}
else{
return false;
}
}
3. 4的幂
- 题目
给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。整数
n
是 4 的幂次方需满足:存在整数 x 使得n == 4x
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/power-of-four
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 题目分析
采用第二种思路,注意循环条件的变化
- 源码实现
bool isPowerOfFour(int n){
if(n <= 0)
{
return false;
}
if(n == 1)
{
return true;
}
unsigned int k = 1;
int i;
for(i = 1; i <= 15; ++i)
{
k *= 4;
if(k == n)
return true;
}
return false;
}
4. 求1+2+3+…+n
- 题目
求
1+2+...+n
,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A ? B:C)。
- 思路分析
根据题目的要求,不能使用循环以及判断等关键字,那么我们可以采用递归实现,注意基准条件,防止陷入死循环。
- 源码实现
int sumNums(int n){
if(n == 1)
{
return 1;
}
return n + sumNums(n-1);
}
5. n的第k个因子
- 题目
给你两个正整数
n
和k
。如果正整数 i 满足
n % i == 0
,那么我们就说正整数i
是整数n
的因子。考虑整数
n
的所有因子,将它们 升序排列 。请你返回第k
个因子。如果n
的因子数少于k
,请你返回 -1 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/the-kth-factor-of-n
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 题目分析
从1开始求取所有能被整除的数字,将结果保存到新数组,根据指定的因子的个数判定第k个因子是否存在
- 源码实现
int kthFactor(int n, int k){
int ans[1000]; //保存计算的结果
int i;
ans[0] = 0;
for(i = 1; i <= n; ++i)
{
if(n % i == 0)
{
ans[++ans[0]] = i; //将所有满足条件的数保存到ans中
}
}
if(ans[0] < k) //判断是否有k个因子
{
return -1;
}
else
{
return ans[k];
}
}
6. 有效的完全平方数
- 题目
给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/valid-perfect-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
- 题目分析
思路一:
利用内置函数sqrt求取平方根,注意将结果相乘判断是否相等,因为sqrt函数的返回值类型是浮点型。
思路二:
枚举所有的情况
- 源码实现
bool isPerfectSquare(int num){
if(num == 0)
{
return false;
}
int ret;
ret = sqrt(num);
if(ret * ret == num)
{
return true;
}
else
{
return false;
}
}