《Leetcode零基础指南》(第三讲)循环

1. 2的幂

231. 2 的幂

  • 题目

给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。如果存在一个整数 x 使得 n == 2x ,则认为 n 是 2 的幂次方。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/power-of-two
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

  • 题目分析

判断是否为2的次幂,我们有两种思路:一种是对整数n取余,结果为1则是2的幂次方;一种是从1开始不断乘2,直到与整数n相等,这里实现的是第二种思路

  • 源码实现
bool isPowerOfTwo(int n){
    unsigned int k = 1;

    if(n <= 0)	//排除小于等于0的情况
    {
        return false;
    }
    if(n == 1)	//1是任何数的幂次方
    {
        return true;
    }
    int i;
    for(i = 1; i <= 31; ++i)
    {
        k *= 2;	//循环乘2
        if(k == n)
            return true;       
    }
    return false;
}

2. 3的幂

326. 3的幂

  • 题目

给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3x

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/power-of-three
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

  • 题目分析

参照上面的思路,这里使用的是第一种思路求解

  • 源码实现
bool isPowerOfThree(int n){
    if(n <= 0){
        return false;
    }
    if(n == 1){
        return true;
    }
    int k = n;
    int flag = 1;
    while(k){
        //能是3的幂,那一定能被3整除
        if(k % 3 == 0){
            k /= 3;
            if(k == 1){ //满足条件的最后一定为1
                break;
            }
        }
        else{
            flag = 0;
            break;
        }
    }
    if(flag){
        return true;
    }
    else{
        return false;
    }
}

3. 4的幂

342. 4的幂

  • 题目

给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。整数 n是 4 的幂次方需满足:存在整数 x 使得 n == 4x

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/power-of-four
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

  • 题目分析

采用第二种思路,注意循环条件的变化

  • 源码实现
bool isPowerOfFour(int n){
    if(n <= 0)
    {
        return false;
    }
    if(n == 1)
    {
        return true;
    }

    unsigned int k = 1;
    int i;
    for(i = 1; i <= 15; ++i)
    {
        k *= 4;
        if(k == n)
            return true;
    }
    return false;
}

4. 求1+2+3+…+n

剑指 Offer 64. 求1+2+…+n

  • 题目

1+2+...+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A ? B:C)。

  • 思路分析

根据题目的要求,不能使用循环以及判断等关键字,那么我们可以采用递归实现,注意基准条件,防止陷入死循环。

  • 源码实现
int sumNums(int n){
    if(n == 1)
    {
        return 1;
    }
    return  n + sumNums(n-1);
}

5. n的第k个因子

1492. n 的第 k 个因子

  • 题目

给你两个正整数 nk

如果正整数 i 满足 n % i == 0 ,那么我们就说正整数i 是整数 n的因子。

考虑整数 n 的所有因子,将它们 升序排列 。请你返回第 k 个因子。如果 n 的因子数少于 k ,请你返回 -1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/the-kth-factor-of-n
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

  • 题目分析

从1开始求取所有能被整除的数字,将结果保存到新数组,根据指定的因子的个数判定第k个因子是否存在

  • 源码实现
int kthFactor(int n, int k){
    int ans[1000];	//保存计算的结果

    int i;
    ans[0] = 0;
    for(i = 1; i <= n; ++i)
    {
        if(n % i == 0)
        {
            ans[++ans[0]] = i;	//将所有满足条件的数保存到ans中
        } 
    }

    if(ans[0] < k)	//判断是否有k个因子
    {
        return -1;
    }
    else
    {
        return ans[k];
    }
}

6. 有效的完全平方数

367. 有效的完全平方数

  • 题目

给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。

进阶:不要 使用任何内置的库函数,如 sqrt 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/valid-perfect-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

  • 题目分析

思路一:

利用内置函数sqrt求取平方根,注意将结果相乘判断是否相等,因为sqrt函数的返回值类型是浮点型。

思路二:

枚举所有的情况

  • 源码实现
bool isPerfectSquare(int num){
    if(num == 0)
    {
        return false;
    }
    int ret;
    ret = sqrt(num);
    if(ret * ret == num)
    {
        return true;
    }
    else
    {
        return false;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值