决策树
Subin_
这个作者很懒,什么都没留下…
展开
-
CART(分类回归树)分类算法原理
CART(分类回归树)分类算法原理目的生成一颗决策树,输入X(各种特征条件)输出Y(该样本分类结果)。一、分类树选择特征的依赖——基尼指数基尼指数——总体内包含的类别越杂乱,基尼指数就越大在CART算法中, 基尼不纯度表示一个随机选中的样本在子集中被分错的可能性。基尼不纯度 = ∑i=1K(\sum_{i=1}^K(∑i=1K(样本iii被选中的概率 ∗*∗ 它被分错的概率)...原创 2019-08-16 17:04:57 · 3070 阅读 · 0 评论 -
基于CART的AIOPS智能化告警分析系统
CART(分类回归树)分类算法原理目的生成一颗决策树,输入X(各种特征条件)输出Y(该样本分类结果)。分类树选择特征的依赖——基尼指数那么要按照哪种特征分类呢?CART树根据基尼指数选择特征。基尼指数可以通过如下公式计算:Gini(p)=∑i=1Kpi(1−pi)=1−∑i=1Kpi2Gini(p)=\sum_{i=1}^Kp_i(1-p_i)=1-\sum_{i=1}^K{p_...原创 2019-09-30 16:50:13 · 325 阅读 · 0 评论