蝴蝶引理 U , V ⊆ G U,V\subseteq G U,V⊆G为其子群, u , v u,v u,v分别是 U , V U,V U,V的正规子群.则有
- u ( U ∩ v ) ◃ u ( U ∩ V ) , ( u ∩ V ) v ◃ ( U ∩ V ) v u(U\cap v)\triangleleft u(U\cap V),(u\cap V)v\triangleleft (U\cap V)v u(U∩v)◃u(U∩V),(u∩V)v◃(U∩V)v
- u ( U ∩ V ) u ( U ∩ v ) ≅ ( U ∩ V ) v ( u ∩ V ) v \frac{u(U\cap V)}{u(U\cap v)}\cong \frac{(U\cap V)v}{(u\cap V)v} u(U∩v)u(U∩V)≅(u∩V)v(U∩V)v
证明:
因
N
(
u
)
⊃
U
⊃
(
U
∩
V
)
N(u)\supset U\supset (U\cap V)
N(u)⊃U⊃(U∩V),故而
u
(
U
∩
V
)
,
u
(
U
∩
v
)
u(U\cap V),u(U\cap v)
u(U∩V),u(U∩v)都是G的子群,这里
N
(
u
)
N(u)
N(u)表示
u
u
u的Normalizer.同理,
(
U
∩
V
)
v
,
(
u
∩
V
)
v
(U\cap V)v,(u\cap V)v
(U∩V)v,(u∩V)v也都是G的子群.
令
H
=
U
∩
V
,
K
=
u
(
U
∩
v
)
H=U\cap V,K=u(U\cap v)
H=U∩V,K=u(U∩v),则有
K
H
=
u
(
U
∩
v
)
(
U
∩
V
)
=
u
(
U
∩
V
)
KH=u(U\cap v)(U\cap V)=u(U\cap V)
KH=u(U∩v)(U∩V)=u(U∩V),并且有
N
(
K
)
=
N
(
U
∩
v
)
⊃
N
(
u
)
∩
N
(
U
∩
v
)
⊃
U
∩
V
=
H
N(K)=N(U\cap v)\supset N(u)\cap N(U\cap v)\supset U\cap V=H
N(K)=N(U∩v)⊃N(u)∩N(U∩v)⊃U∩V=H,故而由群同构第二定理,可知
- u ( U ∩ v ) = K ◃ K H = u ( U ∩ V ) u(U\cap v)=K\triangleleft KH=u(U\cap V) u(U∩v)=K◃KH=u(U∩V)
- u ( U ∩ V ) u ( U ∩ v ) = H K K ≅ H H ∩ K = U ∩ V U ∩ V ∩ u ( U ∩ v ) \frac{u(U\cap V)}{u(U\cap v)}=\frac{HK}{K}\cong \frac{H}{H\cap K}=\frac{U\cap V}{U\cap V\cap u(U\cap v)} u(U∩v)u(U∩V)=KHK≅H∩KH=U∩V∩u(U∩v)U∩V
引理1.
u
(
U
∩
v
)
=
U
∩
u
v
u(U\cap v)=U\cap uv
u(U∩v)=U∩uv.注意,
u
v
uv
uv并不一定G的子群,但是作为G的子集是良定义的.
证明:首先有
u
(
U
∩
v
)
⊆
U
,
u
(
U
∩
v
)
⊆
u
v
⇒
u
(
U
∩
v
)
⊆
U
∩
u
v
u(U\cap v)\subseteq U,u(U\cap v)\subseteq uv\Rightarrow u(U\cap v)\subseteq U\cap uv
u(U∩v)⊆U,u(U∩v)⊆uv⇒u(U∩v)⊆U∩uv
其次,
∀
x
∈
U
∩
u
v
,
∃
a
∈
u
,
b
∈
v
,
s
.
t
.
x
=
a
b
⇒
b
=
a
−
1
⋅
x
\forall x\in U\cap uv,\exists a\in u,b\in v,s.t.\ x=ab\Rightarrow b=a^{-1}\cdot x
∀x∈U∩uv,∃a∈u,b∈v,s.t. x=ab⇒b=a−1⋅x
因
a
−
1
∈
u
⊆
U
,
x
∈
U
⇒
b
∈
U
⇒
b
∈
U
∩
v
⇒
x
=
a
b
∈
u
(
U
∩
v
)
⇒
u
(
U
∩
v
)
⊇
U
∩
u
v
a^{-1}\in u\subseteq U,x\in U\Rightarrow b\in U\Rightarrow b\in U\cap v\Rightarrow x=ab\in u(U\cap v)\Rightarrow u(U\cap v)\supseteq U\cap uv
a−1∈u⊆U,x∈U⇒b∈U⇒b∈U∩v⇒x=ab∈u(U∩v)⇒u(U∩v)⊇U∩uv.
■
\blacksquare
■
由引理1,有
u
(
U
∩
V
)
u
(
U
∩
v
)
≅
U
∩
V
U
∩
V
∩
(
U
∩
u
v
)
=
U
∩
V
U
∩
V
∩
u
v
\frac{u(U\cap V)}{u(U\cap v)}\cong \frac{U\cap V}{U\cap V\cap (U\cap uv)}=\frac{U\cap V}{U\cap V\cap uv}
u(U∩v)u(U∩V)≅U∩V∩(U∩uv)U∩V=U∩V∩uvU∩V.
同理,可证
(
u
∩
V
)
v
◃
(
U
∩
V
)
v
(u\cap V)v\triangleleft (U\cap V)v
(u∩V)v◃(U∩V)v,以及
(
U
∩
V
)
v
(
u
∩
V
)
v
≅
U
∩
V
U
∩
V
∩
u
v
\frac{(U\cap V)v}{(u\cap V)v}\cong \frac{U\cap V}{U\cap V\cap uv}
(u∩V)v(U∩V)v≅U∩V∩uvU∩V.同之前的结论合在一块即得蝴蝶引理.
■
\blacksquare
■