蝴蝶引理(群论)

蝴蝶引理 U , V ⊆ G U,V\subseteq G U,VG为其子群, u , v u,v u,v分别是 U , V U,V U,V的正规子群.则有

  1. u ( U ∩ v ) ◃ u ( U ∩ V ) , ( u ∩ V ) v ◃ ( U ∩ V ) v u(U\cap v)\triangleleft u(U\cap V),(u\cap V)v\triangleleft (U\cap V)v u(Uv)u(UV),(uV)v(UV)v
  2. u ( U ∩ V ) u ( U ∩ v ) ≅ ( U ∩ V ) v ( u ∩ V ) v \frac{u(U\cap V)}{u(U\cap v)}\cong \frac{(U\cap V)v}{(u\cap V)v} u(Uv)u(UV)(uV)v(UV)v

证明:
N ( u ) ⊃ U ⊃ ( U ∩ V ) N(u)\supset U\supset (U\cap V) N(u)U(UV),故而 u ( U ∩ V ) , u ( U ∩ v ) u(U\cap V),u(U\cap v) u(UV),u(Uv)都是G的子群,这里 N ( u ) N(u) N(u)表示 u u u的Normalizer.同理, ( U ∩ V ) v , ( u ∩ V ) v (U\cap V)v,(u\cap V)v (UV)v,(uV)v也都是G的子群.
H = U ∩ V , K = u ( U ∩ v ) H=U\cap V,K=u(U\cap v) H=UV,K=u(Uv),则有 K H = u ( U ∩ v ) ( U ∩ V ) = u ( U ∩ V ) KH=u(U\cap v)(U\cap V)=u(U\cap V) KH=u(Uv)(UV)=u(UV),并且有
N ( K ) = N ( U ∩ v ) ⊃ N ( u ) ∩ N ( U ∩ v ) ⊃ U ∩ V = H N(K)=N(U\cap v)\supset N(u)\cap N(U\cap v)\supset U\cap V=H N(K)=N(Uv)N(u)N(Uv)UV=H,故而由群同构第二定理,可知

  1. u ( U ∩ v ) = K ◃ K H = u ( U ∩ V ) u(U\cap v)=K\triangleleft KH=u(U\cap V) u(Uv)=KKH=u(UV)
  2. u ( U ∩ V ) u ( U ∩ v ) = H K K ≅ H H ∩ K = U ∩ V U ∩ V ∩ u ( U ∩ v ) \frac{u(U\cap V)}{u(U\cap v)}=\frac{HK}{K}\cong \frac{H}{H\cap K}=\frac{U\cap V}{U\cap V\cap u(U\cap v)} u(Uv)u(UV)=KHKHKH=UVu(Uv)UV

引理1. u ( U ∩ v ) = U ∩ u v u(U\cap v)=U\cap uv u(Uv)=Uuv.注意, u v uv uv并不一定G的子群,但是作为G的子集是良定义的.
证明:首先有 u ( U ∩ v ) ⊆ U , u ( U ∩ v ) ⊆ u v ⇒ u ( U ∩ v ) ⊆ U ∩ u v u(U\cap v)\subseteq U,u(U\cap v)\subseteq uv\Rightarrow u(U\cap v)\subseteq U\cap uv u(Uv)U,u(Uv)uvu(Uv)Uuv
其次, ∀ x ∈ U ∩ u v , ∃ a ∈ u , b ∈ v , s . t .   x = a b ⇒ b = a − 1 ⋅ x \forall x\in U\cap uv,\exists a\in u,b\in v,s.t.\ x=ab\Rightarrow b=a^{-1}\cdot x xUuv,au,bv,s.t. x=abb=a1x
a − 1 ∈ u ⊆ U , x ∈ U ⇒ b ∈ U ⇒ b ∈ U ∩ v ⇒ x = a b ∈ u ( U ∩ v ) ⇒ u ( U ∩ v ) ⊇ U ∩ u v a^{-1}\in u\subseteq U,x\in U\Rightarrow b\in U\Rightarrow b\in U\cap v\Rightarrow x=ab\in u(U\cap v)\Rightarrow u(U\cap v)\supseteq U\cap uv a1uU,xUbUbUvx=abu(Uv)u(Uv)Uuv. ■ \blacksquare

由引理1,有 u ( U ∩ V ) u ( U ∩ v ) ≅ U ∩ V U ∩ V ∩ ( U ∩ u v ) = U ∩ V U ∩ V ∩ u v \frac{u(U\cap V)}{u(U\cap v)}\cong \frac{U\cap V}{U\cap V\cap (U\cap uv)}=\frac{U\cap V}{U\cap V\cap uv} u(Uv)u(UV)UV(Uuv)UV=UVuvUV.
同理,可证 ( u ∩ V ) v ◃ ( U ∩ V ) v (u\cap V)v\triangleleft (U\cap V)v (uV)v(UV)v,以及 ( U ∩ V ) v ( u ∩ V ) v ≅ U ∩ V U ∩ V ∩ u v \frac{(U\cap V)v}{(u\cap V)v}\cong \frac{U\cap V}{U\cap V\cap uv} (uV)v(UV)vUVuvUV.同之前的结论合在一块即得蝴蝶引理. ■ \blacksquare

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值