西瓜书读书笔记


第一章 绪论

机器学习的基本了解

1.什么是机器学习

机器学习是通过从数据中学习得到算法模型的一门学科。

2.基本术语

数据集 (data set)
样本 (sample)/ 示例 (instance)
特征( feature)/ 属性 (attribute)
标签( label)
训练集( training set) 和测试集(testing set)
样本空间(sample space)和标记空间(label space)

3.发展历程

人工智能–机器学习–深度学习–图像识别–自然语言处理–推荐算法


第二章 模型评估及选择

1、误差

泛化误差
训练误差

2、模型评估

留出法
交叉验证法
自助法

3、模型评价

错误率与精度
查准率、查全率与F1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值