第一章 绪论
机器学习的基本了解
1.什么是机器学习
机器学习是通过从数据中学习得到算法模型的一门学科。
2.基本术语
数据集 (data set)
样本 (sample)/ 示例 (instance)
特征( feature)/ 属性 (attribute)
标签( label)
训练集( training set) 和测试集(testing set)
样本空间(sample space)和标记空间(label space)
3.发展历程
人工智能–机器学习–深度学习–图像识别–自然语言处理–推荐算法
第二章 模型评估及选择
1、误差
泛化误差
训练误差
2、模型评估
留出法
交叉验证法
自助法
3、模型评价
错误率与精度
查准率、查全率与F1