基础题 4 ——《实用算法基础教程》

放球

把m个球放入编号0,1,2,…,k-1的k个盒子中(m<2^k),要求第i盒内放2^i个球,如果无法满足就一个也不放,求出放球的具体方案。

解题技巧

将十进制数M转换成对应的二进制数,将第i位的数字2^i即为第i个盒子应放的球数。

例如:
M = 23 转换成二进制 m = 10111
23 = 2^4 + 2^2 + 2^1 + 2^0
即0号盒放1个,1号盒放2个,2号盒放4个,3号盒放0个,4号盒放16个

算法

var m:long,i:int;
begin
readln(m);
i := 0;
while m <> 0 do
begin
writeln(i,’:’,(m and 1) * exp(i * ln(2)):0:0)
i := i+1;
m := m shr 1;
end; {while}
readln;
end.{main}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值