统计学习方法
文章平均质量分 91
Sudden|nebbuS
数据分析师,中国科大硕士
https://github.com/Suddennebbus?tab=repositories
展开
-
统计学习方法 | 概论
01 起前段时间把Python的Pandas、Numpy、matplotlib、seaborn包拿来反复练习了一番,对于数据的观察、处理、清洗以及可视化有了一定的认识。随着练习的深入,一个问题在我心中逐渐形成:一份数据的价值,通过清洗、多维度可视化就完全可以被展现出来了么?还不够,还远远不够!于是我开始感受到知识储备的匮乏了。还好前面有老司机带路,于是我琢磨着从理论基础入手,结合...原创 2018-09-21 16:04:37 · 330 阅读 · 0 评论 -
统计学习方法 | 感知机
01 起通过这篇文章我们了解了统计学习方法的概念和基本的三要素。还记得三要素么?模型、策略、算法这周我们进入正题,对各个统计学习方法按照三要素的结构进行学习,先从机器学习最原始的方法说起——感知机。稍微了解一下人工智能的发展历史,我们可以知道,感知机算法见证了人工智能领域的第一次低谷期,启发了后面的神经网络和支持向量机。虽然我们已经不再使用感知机算法求解复杂问题,但了解其思路对于...原创 2018-09-21 16:08:00 · 237 阅读 · 0 评论 -
统计学习方法 | k近邻法
01 起K近邻法(KNN)是一种基本的分类与回归方法分类这种需求,渗透到我们生活的方方面面:根据学生德智体美成绩,将学生分为几类根据一个县城的GDP、人口密度等数据,将全国的县城分为多个类别根据客户的信用、收入、生活习惯将客户分为多个类别……分类算法可以帮助我们完成这些繁琐的操作,并根据我们的要求不断修正分类结果。分类算法其实蛮多的,这里顺着书本顺序,详细讲解KNN算法,...原创 2018-09-21 16:26:31 · 1945 阅读 · 0 评论 -
统计学习方法 | 朴素贝叶斯法
01 起之前我们学习了一种分类方法——K近邻法(KNN),今天我们再学习一种更常用的分类方法朴素贝叶斯法这里,我们先区分一下“分类”和“聚类”分类的目的是学会一个分类函数或分类模型(也常常称作分类器 ),该模型能把新输入的数据映射到给定类别中的某一个类中。聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组(簇),并且对每一个这样的簇进...原创 2018-09-21 16:31:41 · 408 阅读 · 0 评论 -
统计学习方法 | 决策树
01 决策树定义之前我们学习了两种分类方法:K近邻(KNN)朴素贝叶斯(Naive Bayes)今天我们来学习另一种分类方法——决策树在开始学习之前,先提出一个问题:这三种分类方法的区别是什么呢?分别适用什么场景呢?好了,带着疑问,我们开始学习决策树~决策树是什么?它是一种基本的分类与回归的方法,可以认为是if-then规则的集合,决策树分类时,将某结点的实例强行分到条件概...原创 2018-09-22 10:20:16 · 530 阅读 · 0 评论 -
统计学习方法|Logistic回归
01 逻辑斯谛分布logistic回归是一种经典的分类算法,模型形式如下(二分类),其中x服从逻辑斯谛分布:什么叫服从逻辑斯谛分布呢?直观点,分布函数和密度函数长这样:逻辑斯谛回归模型有什么特点呢?我们来看逻辑斯谛分布函数的形状,横轴范围在正负无穷之间,而纵轴范围在0~1之间,这个特征太有意思了!把纵轴看作概率,正好分布在0%~100%之间,横轴作为输入正好在正负无穷之间,可以...原创 2018-09-22 10:26:07 · 642 阅读 · 0 评论 -
统计学习方法|SVM
01 起在统计学习方法这个板块中,我们学习了多个分类算法,比如逻辑斯蒂回归,在逻辑斯蒂回归模型中,我们对数据集有预先的假设——数据集满足逻辑斯蒂分布。今天我们学习另外一种分类模型,这种分类模型对数据集没有做任何假设,它的适用性更广,当我们尚不明确数据分布特性时,使用这个模型分类可能更合适。这个模型叫SVM,中文名叫支持向量机,是一种经典而普适的分类模型。02 SVM简介&基本概...原创 2018-09-22 10:38:56 · 610 阅读 · 0 评论 -
统计学习方法|AdaBoost
01 起在之前的文章中,我们学习了几种经典的分类算法:KNN,Naive Bayes,Decision Tree,Logistic Regression,SVM。接下来我们学习一种方法来提升分类效果,这种方法的核心思想就是:三个臭皮匠,顶个诸葛亮。我们先从集成方法讲起,简单介绍Bagging和Boosting,然后着重介绍提升方法(Boosting),然后给出一种常用的提升方法Adapt ...原创 2018-10-07 17:41:17 · 446 阅读 · 0 评论