【动态规划】超级教主

教主很能跳,因为Orz他的人太多了。教主跳需要消耗能量,每跳1米就会消耗1点能量,如果教主有很多能量就能跳很高。
教主为了收集能量,来到了一个神秘的地方,这个地方凡人是进不来的。在这里,教主的正上方每100米处就有一个能量球(也就是这些能量球位于海拔100,200,300……米处),每个能量球所能提供的能量是不同的,一共有N个能量球(也就是最后一个能量球在N×100米处)。教主为了想收集能量,想跳着吃完所有的能量球。教主可以自由控制他每次跳的高度,接着他跳起把这个高度以下的能量球都吃了,他便能获得能量球内的能量,接着吃到的能量球消失。教主不会轻功,教主不会二段跳,所以教主不能因新吃到的能量而变化此次跳跃的高度。并且教主还是生活在地球上的,所以教主每次跳完都会掉下来。
问教主若要吃完所有的能量球,最多还能保留多少能量。

输入

输入的第1行包含两个正整数N,M,表示了能量球的个数和教主的初始能量。
第2行包含N个非负整数,从左到右第I个数字依次从下向上描述了位于I×100米位置能量球包含的能量,整数之间用空格隔开。

输出

输出仅包括一个非负整数,为教主吃完所有能量球后最多保留的能量。

样例输入

3 200

200 200 200

样例输出

400

提示

第1次跳100米,得到200能量,消耗100能量,所以落地后拥有300能量。
第2次跳300米,吃到剩下的第3棵能量球,消耗拥有的300能量,得到400能量。
若第1次跳200米,第2次跳300米,最后剩余300能量。

对于10%的数据,有N≤10;
对于20%的数据,有N≤100;
对于40%的数据,有N≤1000;
对于70%的数据,有N≤100000;
对于100%的数据,有N≤2000000。
保证对于所有数据,教主都能吃到所有的能量球,并且能量球包含的能量之和不超过2^31-1。

题解:dp[i]代表到第i个能量球时的最大能量,那么可以枚举上一次到达的能量球是第几个,状态转移方程为dp[i]=max(dp[i],dp[indx]+sum[i]-sum[indx]-i*100) (dp[indx]>=i*100),因为上一次跳的越高,剩下的能量就越少,所以直接找到第一个符合的就可以(价值一定比花费大)。

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<vector>
#include<stdlib.h>
#include<math.h>
#include<queue>
#include<deque>
#include<ctype.h>
#include<map>
#include<set>
#include<stack>
#include<string>
#include<algorithm>
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define FAST_IO ios::sync_with_stdio(false)
#define mem(a,b) memset(a,b,sizeof(a))
const double PI = acos(-1.0);
const double eps = 1e-6;
const int MAX=1e5+10;
const long long INF=0x7FFFFFFFFFFFFFFFLL;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
typedef long long ll;
using namespace std;
const int N=2000005;
int sum[N],dp[N];

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);

    for(int i=1;i<=n;i++)
    {
        int temp;
        scanf("%d",&temp);
        sum[i]=sum[i-1]+temp;
    }

    dp[0]=m;
    int indx=0;
    for(int i=1;i<=n;i++)
    {
        while(dp[indx]<i*100)
            indx++;
        dp[i]=dp[indx]+sum[i]-sum[indx]-i*100;
    }

    printf("%d\n",dp[n]);
    return 0;
}

阅读更多

没有更多推荐了,返回首页