#贪心,线性动态规划#CH 5105 cookies

题目

有M个饼干,准备全部分给N个孩子。每个孩子有一个贪婪度,第 i 个孩子的贪婪度为 g[i]。如果有 a[i] 个孩子拿到的饼干数比第 i 个孩子多,那么第 i 个孩子会产生 g[i]*a[i]的怨气。每个孩子至少分到一块饼干,并且所有孩子的怨气总和最小。


分析

这道题没有出现子结构,但是可以发现,贪婪度大的必然分的会多,所以其实是按贪婪度单调不上升的所以子结构可以通过贪心得到,但是直接推很难高效地解决问题,那应该怎么做,可以等价转换成

  1. 若第 i i i个孩子的饼干 > 1 >1 >1,等价分配 j − i j-i ji个饼干给前 i i i个孩子,相对顺序不变,怨气总和不变
  2. 若第 i i i个孩子只有一个饼干,那么枚举之前的多少孩子也获得一个饼干

f [ i ] [ j ] = m i n { f [ i ] [ j − i ] , m i n k = 0 i { f [ k ] [ j − i + k ] + k ∗ ( s u m [ i ] − s u m [ k ] ) } } f[i][j]=min\{f[i][j-i],min_{k=0}^i\{f[k][j-i+k]+k*(sum[i]-sum[k])\}\} f[i][j]=min{f[i][ji],mink=0i{f[k][ji+k]+k(sum[i]sum[k])}}


代码

#include <cstdio>
#include <cstring>
#include <algorithm>
struct rec{int d,f;}a[31],path[31][5001];
int n,m,sum[31],f[31][5001],ans[31];
int in(){
	int ans=0; char c=getchar();
	while (c<48||c>57) c=getchar();
	while (c>47&&c<58) ans=ans*10+c-48,c=getchar();
	return ans;
}
bool cmp(rec x,rec y){return x.f>y.f;}
int main(){
	n=in(); m=in(); memset(f,127/3,sizeof(f));
	for (int i=1;i<=n;i++) a[i]=(rec){i,in()};
	std::stable_sort(a+1,a+1+n,cmp); f[0][0]=0;
	for (int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i].f;
	for (int i=1;i<=n;i++){
		for (int j=i;j<=m;j++){
		    if (f[i][j]>f[i][j-i]) f[i][j]=f[i][j-i],path[i][j]=(rec){i,j-i};//记录路径
		    int rum=sum[i];
		    for (int k=0;k<i;k++){
		    	rum-=a[k].f; int num=f[k][j-i+k]+rum*k;
		    	if (f[i][j]>num) f[i][j]=num,path[i][j]=(rec){k,j-i+k};//只有一块饼干的情况
		    }
		}
	}
	printf("%d",f[n][m]);
	rec c=(rec){n,m};
    while (c.d&&c.f){
    	rec d=path[c.d][c.f];
    	if (d.d==c.d) for (int i=1;i<=d.d;i++) ans[a[i].d]++;//大于一块饼干
    	else for (int i=d.d+1;i<=c.d;i++) ans[a[i].d]++;//只有一块饼干
    	c=d;
    }
    for (int i=1;i<=n;i++) printf("%c%d",i==1?'\n':' ',ans[i]);
	return 0;
}
“华为杯”第十八届中国研究生数学建模竞赛是一项全国性赛事,致力于提升研究生的数学建模与创新实践能力。数学建模是将实际问题转化为数学模型,并运用数学方法求解以解决实际问题的科学方法。该竞赛为参赛者提供了展示学术水平和团队协作精神的平台。 论文模板通常包含以下内容:封面需涵盖比赛名称、学校参赛队号、队员姓名以及“华为杯”和中国研究生创新实践系列大赛的标志;摘要部分应简洁明了地概括研究工作,包括研究问题、方法、主要结果和结论,使读者无需阅读全文即可了解核心内容;目录则列出各章节标题,便于读者快速查找;问题重述部分需详细重新阐述比赛中的实际问题,涵盖背景、原因及重要性;问题分析部分要深入探讨每个问题的内在联系与解决思路,分析各个子问题的特点、难点及可能的解决方案;模型假设与符号说明部分需列出合理假设以简化问题,并清晰定义模型中的变量和符号;模型建立与求解部分是核心,详细阐述将实际问题转化为数学模型的过程,以及采用的数学工具和求解步骤;结果验证与讨论部分展示模型求解结果,评估模型的有效性和局限性,并对结果进行解释;结论部分总结研究工作,强调模型的意义和对未来研究的建议;参考文献部分列出引用文献,遵循规范格式。 在准备竞赛论文时,参赛者需注重逻辑清晰、论述严谨,确保模型科学实用。良好的团队协作和时间管理也是成功的关键。通过竞赛,研究生们不仅锻炼了数学应用能力,还提升了团队合作、问题解决和科研写作能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值