欧拉函数、欧拉定理
文章平均质量分 68
lemondinosaur
转圈圈 不停转圈圈 然后摔倒
展开
-
#lucas定理,乘法逆元,中国剩余定理,欧拉定理,组合数#codevs 1830 洛谷 2480 jzoj 1518 古代猪文
题目求g∑d|nCdnmod999911659g∑d|nCndmod999911659g^{\sum_{d|n}C_n^d}\mod 999911659分析当g是取模的数,答案为0,因为取模的数是质数,所以g,n互质。 由欧拉定理的推论可得 g∑d|nCdn≡g∑d|nCdnmod999911658mod999911659g∑d|nCnd≡g∑d|nCndmod999911...原创 2018-07-17 22:15:07 · 245 阅读 · 0 评论 -
#欧拉函数,乘法逆元#洛谷 2155 BZOJ 2186 沙拉公主的困惑
题目求∑i=1n![gcd(i,m!)==1]\sum_{i=1}^{n!}[gcd(i,m!)==1]i=1∑n![gcd(i,m!)==1]分析显然可知答案求的是n!m!φ(m!)=n!∏i=1kpk−1pk\frac{n!}{m!}\varphi(m!)=n!\prod_{i=1}^k\frac{p_k-1}{p_k}m!n!φ(m!)=n!i=1∏kpkpk−1要注意...原创 2019-08-08 09:13:47 · 164 阅读 · 0 评论 -
#欧拉函数#SPOJ 5971 BZOJ 2226 LCMSUM
题目求∑i=1nlcm(n,i)\sum_{i=1}^nlcm(n,i)∑i=1nlcm(n,i)分析=∑i=1nnigcd(n,i)=\sum_{i=1}^n\frac{ni}{gcd(n,i)}=i=1∑ngcd(n,i)ni=n∑d∣n∑i=1nid[gcd(n,i)==d])=n\sum_{d|n}\sum_{i=1}^n\frac{i}{d}[gcd(n,i)==d])=...原创 2019-08-08 09:05:53 · 147 阅读 · 0 评论 -
2019.05.04 【NOIP提高组】模拟 A 组
解题报告JZOJ 4637 大鱼海棠题目分析JZOJ 4638 第三条跑道题目分析代码JZOJ 4639 Angel Beats!题目分析代码后续JZOJ 4637 大鱼海棠题目有一棵根节点是1的树,选择一个点,使这个点到根节点的路径不能选择,所有点不能选择为输,问先手是否必胜分析如果后手能选到后手必胜的点,先手第一步就能选到,所以除非只有一个点,否则先手必胜JZOJ 4638 第...原创 2019-07-05 07:47:07 · 140 阅读 · 0 评论 -
#欧拉函数#jzoj 1709 洛谷 2158 仪仗队
题目 求C君一次能看到多少人。分析:首先3个点是绝对看得到的(1,0),(0,1),(1,1) 然后从第三行开始为欧拉函数(n-1)把它们加起来*2+3便是答案。代码:#include <cstdio>using namespace std;int n;int phi(int n){ int ans=n,k=1;原创 2018-02-23 15:55:49 · 177 阅读 · 0 评论 -
排列组合专题
算法专题加法原理乘法原理排列定义组合定义性质二项式定理定义计算系数题目大意分析加法原理若完成一件事的方法有nnn类,其中第iii类方法包括aia_iai种不同的方法,且这些方法互不重合,则完成这件事情共有∑ai\sum a_i∑ai种方法。乘法原理若完成一件事需要nnn个步骤,其中第iii个步骤有aia_iai种不同方法,且这些步骤互不干扰,则完成这件事共有∏ai\prod a_i...原创 2019-05-02 16:09:43 · 471 阅读 · 0 评论 -
#埃氏筛,欧拉函数#洛谷 3601 签到题
题目求∑i=lri−φ(i)\sum_{i=l}^{r}i-\varphi(i)i=l∑ri−φ(i)分析首先这道题数据范围非常大,杜教筛是不可能的,所以只能用r−l≤106r-l\leq10^6r−l≤106这一条件,那么首先预处理10610^6106以内的质数,然后用这些质数求欧拉函数,对于大质数,当然是用另外一个数组记录下来然后特判,时间复杂度O(106log106)O(10^6l...原创 2019-04-03 17:45:02 · 324 阅读 · 0 评论 -
#欧拉函数,快速幂,欧拉定理#poj 3696 The Luckiest number
题目求是否存在一个数x=888...888x=888...888x=888...888使得L|xL|xL|x分析首先这道题的这个数可以表示为8(10x−1)÷98(10x−1)÷98(10^x-1)\div9,然后求的就是最小的xxx.L|8(10x−1)÷9=9L|8(10x−1)=9Lgcd(L,8)|10x−1=10x≡1(mod9Lgcd(L,8))L|8(10x−1)÷9...原创 2018-08-25 09:30:39 · 262 阅读 · 0 评论 -
2018_10_27 模拟赛
今日比赛前言JZOJ 5184 Gift题目分析代码JZOJ 4732 函数题目分析代码JZOJ 5185 tty's sequence题目分析代码后续前言只想zzzzzzzzzJZOJ 5184 Gift题目分析也就是说,对于第iii种,剩余的钱是在0到ci−1c_i-1ci−1范围内的,然后可以发现就是01背包,(状态转移方程f[j]=f[j−w[i]+c[i]f[j]=f...原创 2018-10-27 15:54:00 · 399 阅读 · 0 评论 -
2018.07.20【2018提高组】模拟C组
前言:从未绝望的一天JZOJ 3388 绿豆蛙的归宿题目给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达终点。从起点走向终点,到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K 。求从起点走到终点的所经过的路径总长度期望。分析设f[x]f...原创 2018-07-21 23:34:20 · 181 阅读 · 0 评论 -
2018.07.09【2018提高组】模拟B组
前言:再次听取WA声一片!(由于题目较难,分开写)JZOJ 1503 体育场JZOJ 1158 荒岛野人JZOJ 1161 机器人M号后续洛谷 2421 荒岛野人原创 2018-07-09 14:55:21 · 265 阅读 · 0 评论 -
#欧拉函数,数论#hdu 6434 Problem I. Count
题目求∑i=1n∑j=1n[gcd(i+j,i−j)==1]\sum_{i=1}^{n}\sum_{j=1}^n[gcd(i+j,i-j)==1]i=1∑nj=1∑n[gcd(i+j,i−j)==1]分析原式=∑i=1n∑j=1n[gcd(2i,i−j)==1]=∑i=1n∑j=1n[gcd(2i,j)==1]\sum_{i=1}^{n}\sum_{j=1}^n[gcd(2i,i-j)...原创 2018-11-01 18:12:24 · 157 阅读 · 0 评论 -
2018.07.18【2018提高组】模拟C组
前言:再一次OTLJZOJ 3508 好元素JZOJ 3509 倒霉的小C题目求1+∑ni=1gcd(n,i)1+∑i=1ngcd(n,i)1+\sum_{i=1}^ngcd(n,i)分析这个问题可以改变成1+∑d|nd∗φ(n/d),φ(n)指1到n中与n互质的数1+∑d|nd∗φ(n/d),φ(n)指1到n中与n互质的数1+\sum_{d|n}d*\...原创 2018-07-18 14:33:53 · 202 阅读 · 0 评论 -
#动态规划,欧拉函数,快速幂#JZOJ 1161 机器人M号
题目已知M=pc11pc22pc33pcnnM=p1c1p2c2p3c3pncnM=p_1^{c_1}p_2^{c_2}p_3^{c_3}p_n^{c_n},求M的因数的欧拉函数和(欧拉函数φ(M)φ(M)\varphi(M):1至M中与M互质的个数),分成三种情况输出,当M的因数是偶数个不同奇素数的积,那么它是政客,当M的因数是奇数个不同奇素数的积,那么它是军人,当都不成立,就是学者。分三个...原创 2018-07-09 20:34:44 · 224 阅读 · 0 评论 -
#欧拉函数#JZOJ 1164 求和
题目:求出1~N中与N互质的数的总和分析:答案就是N∗φ(N)/2N∗φ(N)/2N*\varphi(N)/2代码:#include <cstdio>#include <cmath>using namespace std;int n;int main(){ scanf("%d",&n);原创 2018-07-09 22:24:31 · 138 阅读 · 0 评论 -
2018.07.13【2018提高组】模拟C组
前言:终于乐观(optimistic)(打表打漏了,还是比较高)JZOJ 3382 七夕祭题目环(jiang)形(de)均(tai)分(cao)纸(shuai)牌(le)分析首先在做这道题之前,要知道均分纸牌,设A[i]=C[i]−SUM/NA[i]=C[i]−SUM/NA[i]=C[i]-SUM/N,然后S[i]是A[i]的前缀和,答案就是∑|S[i]|∑...原创 2018-07-13 22:55:49 · 186 阅读 · 0 评论 -
#莫比乌斯反演,欧拉函数#BZOJ 4804 欧拉心算
题目求∑i=1n∑j=1nφ(gcd(i,j))\sum_{i=1}^n\sum_{j=1}^n\varphi(gcd(i,j))i=1∑nj=1∑nφ(gcd(i,j))分析=∑d=1nφ(d)∑i=1⌊nd⌋∑j=1⌊nd⌋[gcd(i,j)==1]=\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{...原创 2019-08-08 21:42:38 · 214 阅读 · 0 评论