NPL
风狂的学者
学习就要有不畏风雨的疯狂,努力前行
展开
-
NPL实践系列:4、传统机器学习
1. 朴素贝叶斯的原理原理基于朴素贝叶斯公式,比较出后验概率的最大值来进行分类,后验概率的计算是由先验概率与类条件概率的乘积得出,先验概率和类条件概率要通过训练数据集得出,即为朴素贝叶斯分类模型,将其保存为中间结果,测试文档进行分类时调用这个中间结果得出后验概率。基本定义分类是把一个事物分到某个类别中。一个事物具有很多属性,把它的众多属性看作一个向量,即x=(x1,x2,x3,…,...原创 2019-03-09 21:50:21 · 525 阅读 · 0 评论 -
NPL实践系列:7、卷积神经网络
1. 卷积运算1.1卷积运算定义卷积,是我们在各种工程领域,信号领域所看到的常用名词,学通信的同学应该很熟悉。那什么是卷积?通俗来说,即是这样的一个变换过程:输出 = 输入 * 系统虽然它看起来只是个复杂的数学公式,但是却有着重要的物理意义,因为自然界这样的系统无处不在,计算一个系统的输出最好的方法就是运用卷积。更一般的,我们还有很多其他领域的应用:统计学中,加权的滑动平均是一种卷积。...原创 2019-03-15 21:55:12 · 1562 阅读 · 0 评论 -
NPL实践系列:5、神经网络基础
1. 神经网络基础概念1.1前馈神经网络、1.2网络层数、输入层、隐藏层、输出层、隐藏单元1.3激活函数。2. 感知机相关;利用tensorflow等工具定义简单的几层网络(激活函数sigmoid),递归使用链式法则来实现反向传播。3. 激活函数的种类以及各自的提出背景、优缺点。(和线性模型对比,线性模型的局限性,去线性化)4. 深度学习中的正则化(参数范数惩罚:L1正则化、L2正则化...原创 2019-03-12 13:32:27 · 967 阅读 · 0 评论 -
NPL实践系列:8、循环神经网络
1. RNN介绍1.1 RNN结构RNN(Recurrent Neural Network),即是循环神经网络,是一类用于处理序列数据的神经网络。从基础的神经网络中知道,神经网络包含输入层、隐层、输出层,通过激活函数控制输出,层与层之间通过权值连接。激活函数是事先确定好的,那么神经网络模型通过训练“学“到的东西就蕴含在“权值“中。基础的神经网络只在层与层之间建立了权连接,RNN最大的不同之...原创 2019-03-16 21:58:55 · 820 阅读 · 0 评论 -
NPL实践系列:6、简单神经网络
1. 文本表示:从one-hot到word2vec1.1 词袋模型:离散、高维、稀疏1.2 分布式表示:连续、低维、稠密。word2vec词向量原理并实践,用来表示文本2. 走进FastText2.1 FastText的原理2.2 利用FastText模型进行文本分类...原创 2019-03-13 17:16:09 · 482 阅读 · 0 评论