💖💖⚡️⚡️专栏:Python OpenCV精讲⚡️⚡️💖💖
本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计,从基础概念入手,逐步深入到图像处理、特征检测、物体识别等多个领域。适合希望在计算机视觉方向上建立坚实基础的技术人员及研究者。每一课不仅包含理论讲解,更有实战代码示例,助力读者快速将所学应用于实际项目中,提升解决复杂视觉问题的能力。无论是入门者还是寻求技能进阶的开发者,都将在此收获满满的知识与实践经验。
1. 深度学习模型加载
OpenCV支持加载多种框架训练得到的模型,包括TensorFlow、PyTorch、Caffe等。这些模型可以用于执行各种任务,比如物体检测、语义分割、人脸关键点检测等。
1.1 加载TensorFlow模型
import cv2
# 加载预训练的物体检测模型
net = cv2.dnn.readNetFromTensorflow("frozen_inference_graph.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt")
1.2 加载PyTorch模型
import cv2
# 加载预训练的物体检测模型
net = cv2.dnn.readNetFromTorch("model.pth")
1.3 加载Caffe模型
import cv2
# 加载预训练的物体检测模型
net = cv2.dnn.readNetFromCaffe("deploy.prototxt.txt", "res10_300x300_ssd_iter_140000.caffemodel")
2. 模型应用
一旦模型加载完毕,就可以用来执行预测任务了。OpenCV提供了简单的接口来处理输入图像并获取输出结果。
2.1 预处理图像
import cv2
import numpy as np
def preprocess_image(image_path, input_size=(300, 300)):
# 加载图像
image = cv2.imread(image_path)
height, width = image.shape[:2]
# 将图像缩放到模型所需的尺寸
blob = cv2.dnn.blobFromImage(image, size=input_size, swapRB=True, crop=False)
return blob, height, width
2.2 执行预测
def run_inference(model, preprocessed_image):
# 设置输入
model.setInput(preprocessed_image)
# 运行模型
detections = model.forward()
return detections
实例:物体检测
物体检测是计算机视觉中最常见的任务之一,它涉及识别图像中特定类别的物体,并给出其位置。OpenCV支持使用预训练的深度学习模型来进行物体检测。
3. 物体检测示例
3.1 准备模型
import cv2
def load_model():
# 加载预训练的物体检测模型
net = cv2.dnn.readNetFromTensorflow("frozen_inference_graph.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt")
return net
3.2 检测物体
import cv2
import numpy as np
def detect_objects(image_path, model):
# 预处理图像
preprocessed_image, height, width = preprocess_image(image_path)
# 运行模型
detections = run_inference(model, preprocessed_image)
# 解析结果
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
class_id = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
(startX, startY, endX, endY) = box.astype("int")
# 画出边界框
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2)
label = "{}: {:.2f}%".format(class_id, confidence * 100)
print("[INFO] {}".format(label))
cv2.putText(image, label, (startX, startY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示图像
cv2.imshow("Object Detection", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 主函数
if __name__ == "__main__":
model = load_model()
detect_objects("path/to/your/image.jpg", model)
4. 语义分割
语义分割是一种将图像中的像素分类为不同类别标签的任务。OpenCV可以通过加载相应的模型来实现这一功能。
4.1 准备模型
import cv2
def load_model():
# 加载预训练的语义分割模型
net = cv2.dnn.readNetFromTensorflow("frozen_inference_graph.pb", "deeplabv3_xception_tf_dim_ordering_tf_kernels_aspp.pbtxt")
return net
4.2 分割图像
import cv2
import numpy as np
def segment_image(image_path, model):
# 预处理图像
preprocessed_image, height, width = preprocess_image(image_path, input_size=(513, 513))
# 运行模型
output = run_inference(model, preprocessed_image)
# 解析结果
output = np.squeeze(output)
output = cv2.resize(output, (width, height), interpolation=cv2.INTER_CUBIC)
# 应用颜色映射
colors = np.array([(0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128)], dtype=np.uint8)
segmented_image = np.take(colors, output.flatten(), axis=0).reshape(height, width, 3)
# 显示分割后的图像
cv2.imshow("Segmented Image", segmented_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 主函数
if __name__ == "__main__":
model = load_model()
segment_image("path/to/your/image.jpg", model)
5. 其他任务
除了物体检测和语义分割外,OpenCV还支持其他任务,如关键点检测、面部识别等。
结论
本文详细介绍了如何在OpenCV中集成深度学习模型来解决物体检测和语义分割等常见问题。通过加载预训练的模型并利用OpenCV提供的接口,我们可以轻松地将深度学习技术应用于实际项目中。希望这篇文章能够帮助你更好地理解和应用OpenCV与深度学习的结合。